Influences of pH and moisture content on the methane production in high-solids sludge digestion

1997 ◽  
Vol 31 (6) ◽  
pp. 1518-1524 ◽  
Author(s):  
Jiunn-Jyi Lay ◽  
Yu-You Li ◽  
Tatsuya Noike
1997 ◽  
Vol 36 (6-7) ◽  
pp. 493-500 ◽  
Author(s):  
J. J. Lay ◽  
Y. Y. Li ◽  
T. Noike ◽  
J. Endo ◽  
S. Ishimoto

A simple model developed from the Gompertz equation was used to describe the cumulative methane production curve in the batch culture. By using this model, three key parameters, namely methane production rate, potential and lagphase time, in a cumulative methane production curve were exactly estimated based on the experimental data. The results indicate that each gram of dry organic waste of a sludge cake, meat, carrot, rice, potato and cabbage had a methane production potential of 450, 424, 269, 214, 203 and 96 mL, respectively. The methanogenic activity of these digesters decreased with a decrease in the moisture content. The moisture content threshold limit, at which the methanogenic activity dropped to zero, was found to be 56.6% for the sludge cake, but greater than 80% for meat, carrot and cabbage. In the high-solids sludge digestion, the relative methanogenic activity dropped from 100% to 53% when the moisture content decreased from 96% to 90%. The rate of methane production at moisture contents of 90% to 96% functioned in a pH range between 6.6 and 7.8, but optimally at pH 6.8, and the process may fail if the pH was lower than 6.1 or higher than 8.3. On the other hand, the methanogenic activity was dependent on the level of ammonium, NH4+, but not free ammonia, NH3, indicating that the NH4+ was the more significant factor rather than the NH3 in affecting the methanogenic activity of a well-acclimatized bacterial system. In the wide pH range of 6.5 to 8.5, the methanogenic activity decreased with the increase in the NH4+; dropped 10% at the NH4+-N concentration of 1670-3720 mg·L−1, 50% at 4090-5550 mg·L−1 and dropped to zero at 5880-6600 mg·L−1. However, the lagphase time was dependent on the NH3 level, but not on NH4+, and when NH3-N was higher than 500 mg·L−1, a notable shock was observed. This suggests that the NH3 level was the more sensitive factor than the NH4+ level for an unacclimatized bacterial system.


TAPPI Journal ◽  
2020 ◽  
Vol 19 (7) ◽  
pp. 330-340
Author(s):  
RICHARD KEREKES ◽  
DAVID MCDONALD

Equilibrium moisture is a limiting factor in achieving high solids in the later stages of pressing or pressing low basis weight grades. We have developed a model that relates equilibrium moisture directly to the pore size distribution of fibers as measured by the solute exclusion technique. The model shows that chemical pulping and refining increase equilibrium moisture by increasing pore volume at given pore sizes in fibers, which leads to lower pressed solids and greater energy expenditure in the dryer section. Means to increase equilibrium moisture without compromising pulp strength are briefly discussed.


2008 ◽  
Vol 58 (9) ◽  
pp. 1757-1763 ◽  
Author(s):  
J. Guendouz ◽  
P. Buffière ◽  
J. Cacho ◽  
M. Carrère ◽  
J.-P. Delgenes

Two experiments were undertaken in three different experimental set-ups in order to compare them: an industrial 21-m3 pilot reactor, a new 40-ℓ laboratory pilot reactor and bmp type plasma bottles. Three consecutive batch dry digestion tests of municipal solid waste were performed under mesophilic conditions with the same feedstock in all vessels. Biogas and methane production at the end of the tests were similar (around 200 m3 CH4STP/tVS) for both pilot reactors and were different from the bottle tests. The dynamics of methane production and VFA accumulation concurred. However, the maximal levels of VFA transitory accumulation varied between reactors and between runs in a same reactor. Ammonia levels were similar in both reactors. These results show that the new reactor accurately imitates the conditions found in the larger one. Adaptation of microorganisms to the waste and operating conditions was also pointed out along the consecutive batches. Thermophilic semi-continuous tests were performed in both reactors with similar conditions. The methane production efficiencies were similar.


2017 ◽  
Vol 6 (3) ◽  
Author(s):  
Jiri Rusin ◽  
Katerina Chamradova ◽  
Barbora Grycova

AbstractIn this study, we tested the high-solids thermophilic anaerobic digestion of separated cattle slurry solids inoculated by liquid digestate collected from the 1


2018 ◽  
Vol 61 (3) ◽  
pp. 1145-1155
Author(s):  
Drew F. Schiavone ◽  
Michael D. Montross

Abstract. This study characterized the hydraulic properties within baled switchgrass ( L., variety Alamo) and miscanthus (×), thereby enabling a better understanding of moisture changes in baled biomass during on-farm storage and/or high-solids bioconversion. Fully saturated bales were drained by gravity, and the moisture content was determined over 60 h. The average initial moisture content ranged between 55.9% and 71.9% (w.b.) for switchgrass and between 60.5% and 73.9% (w.b.) for miscanthus bales depending on the dry bale density. As the bale drained by gravity, rapid leaching of water was observed within the first 0.1 h, with a reduction in moisture content of 7.3 and 7.0 percentage points (w.b.) for switchgrass and miscanthus, respectively. Leaching then continued at a steady rate until termination of the experiment, with further reductions of 4.3 and 4.4 percentage points (w.b.) for switchgrass and miscanthus, respectively. Final moisture contents after 60 h ranged from 45.8% to 58.3% for switchgrass and from 48.7% to 60% for miscanthus, with the higher moisture contents observed in the lowest density bales. Hydraulic conductivity tests were carried out with bales of switchgrass and miscanthus with a constant head system. The average saturated hydraulic conductivity ranged between 0.103 and 0.616 cm s-1 for baled switchgrass and between 0.219 and 0.658 cm s-1 for baled miscanthus depending on the bale density. The matric suction of baled switchgrass was also assessed at variable densities and moisture contents using the contact filter paper method. The van Genuchten parameters were found to range between 0.235 and 0.270 m-1 for a and between 5.415 and 10.345 for n, depending on the density. Infiltration tests were also carried out on baled switchgrass at variable densities and moisture contents using a minidisk infiltrometer. The curve-fitting parameters of Philip’s two-term equation ranged between 0.086 × 10-6 and 0.779 × 10-6 cm s-1 for C1 and between 0.200 and 5.805 × 10-6 cm s-1/2 for C2, depending on the density and moisture content. The unsaturated hydraulic conductivity ranged between 0.019 and 0.272 cm s-1, while sorptivity ranged between 0.048 and 2.103 cm s-1/2, depending on the density and moisture content. These results provide data required to evaluate water flow through variable-density rectangular bales and indicate a potential to remove end-products of biomass conversion from baled biomass. Keywords: Biomass, Bioprocessing, Flushing, High solids.


1986 ◽  
Vol 13 (1) ◽  
pp. 33-38 ◽  
Author(s):  
Warren B. Kindzierski ◽  
Steve E. Hrudey

Aluminum sulphate (alum) and ferric chloride are commonly employed to aid phosphorus removal in wastewater treatment. Previous studies have indicated that these chemical coagulants produce sludges that adversely affect anaerobic digestion. The objective of this study was to assess the magnitude of the effects chemical coagulants have upon methane generation in anaerobic digestion. Methane production was monitored and concentrations of aluminum or iron present during batch digestion of chemically precipitated sludge were measured.Both alum and ferric chloride addition to activated sludge produced a sludge that demonstrated reduced methane production in batch anaerobic digestion. Neither metal inhibited methanogenesis of an acetate supplement, suggesting that chemical toxicity was not a likely explanation for overall reductions in methane formation. Considering the experimental results and the findings of others, reduced methane generation is most likely caused by physical isolation of degradable substrate by the coagulant floc, which causes an overall reduction in conversion of sludge volatile solids to methane.


2000 ◽  
Vol 41 (3) ◽  
pp. 119-127 ◽  
Author(s):  
S. Fujishima ◽  
T. Miyahara ◽  
T. Noike

The purpose of this study is to investigate the effect of moisture content on anaerobic digestion of dewatered sewage sludge under mesophilic condition. The moisture contents of sludge fed to reactors were 97.0%, 94.6%, 92.9%, 91.1% and 89.0%. The VS removal efficiency changed from 45.6% to 33.8%, as the moisture content of sludge fed to digester decreased from 97.0% to 89.0%. The carbohydrate removal efficiency also decreased from 71.1% to 27.8%. Methane production decreased when the moisture content of sludge was lower than 91.1%. The number of glucose consuming acidogenic bacteria was decreased from 3.1×106 to 3.1×108(MPN/mL) as the moisture content decreased from 91.1% to 89.0%. The numbers of hydrogenotrophic and acetoclastic methanogenic bacteria decreased by one order of magnitude when the moisture content was lower than 91.1%. The decrease in numbers of glucose consuming acidogenic bacteria and methanogenic bacteria was found to correspond to the decrease in the carbohydrate removal efficiency and the accumulation of propionic acid. Batch experiments showed that acetoclastic methanogenic bacteria were acclimated to high ammonia concentration, on the other hand, glucose consuming acidogenic bacteria were inhibited.


Sign in / Sign up

Export Citation Format

Share Document