Effects of phosphorus removal chemicals upon methane production during anaerobic sludge digestion

1986 ◽  
Vol 13 (1) ◽  
pp. 33-38 ◽  
Author(s):  
Warren B. Kindzierski ◽  
Steve E. Hrudey

Aluminum sulphate (alum) and ferric chloride are commonly employed to aid phosphorus removal in wastewater treatment. Previous studies have indicated that these chemical coagulants produce sludges that adversely affect anaerobic digestion. The objective of this study was to assess the magnitude of the effects chemical coagulants have upon methane generation in anaerobic digestion. Methane production was monitored and concentrations of aluminum or iron present during batch digestion of chemically precipitated sludge were measured.Both alum and ferric chloride addition to activated sludge produced a sludge that demonstrated reduced methane production in batch anaerobic digestion. Neither metal inhibited methanogenesis of an acetate supplement, suggesting that chemical toxicity was not a likely explanation for overall reductions in methane formation. Considering the experimental results and the findings of others, reduced methane generation is most likely caused by physical isolation of degradable substrate by the coagulant floc, which causes an overall reduction in conversion of sludge volatile solids to methane.

2010 ◽  
Vol 2 (5) ◽  
pp. 71-74
Author(s):  
Svetlana Ofverstrom ◽  
Ieva Sapkaitė ◽  
Regimantas Dauknys

The paper investigates the efficiency of the mixture of primary sludge and excess activated sludge in Vilnius WWTP with reference to the anaerobic digestion process. Sludge digestion was carried out under laboratory conditions using anaerobic sludge digestion model W8 (Armfield Ltd., UK). Laboratory analyses consist of two periods – the anaerobic digestion of the un-dosed and Fe-dosed sludge mixture. The results of digestion were processed using the methods of statistical analysis. The findings showed reduction in volatile solids approx. by 6% when dosing min FeCl3·6H2O and 15% when dosing max FeCl3·6H2O into feed sludge. Gas volume produced during the digestion of the un-dosed sludge was 90–160 ml/d and 60–125 ml/d in min Fe-dosed sludge and 45-95 ml/d. Also, correlation between VS loadings and biogas production was found. A rise in VS loading from 0,64 g/l/d to 1,01 g/l/d increased biogas production from 90 ml/d to 140–160 ml/d.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2561
Author(s):  
Furqan Muhayodin ◽  
Albrecht Fritze ◽  
Oliver Christopher Larsen ◽  
Marcel Spahr ◽  
Vera Susanne Rotter

Rice straw is an agricultural residue produced in abundant quantities. Open burning and plowing back the straw to the fields are common practices for its disposal. In-situ incorporation and burning cause emissions of greenhouse gas and particulate matter. Additionally, the energy potential of rice straw is lost. Anaerobic digestion is a technology that can be potentially used to utilize the surplus rice straw, provide renewable energy, circulate nutrients available in the digestate, and reduce greenhouse gas emissions from rice paddies. An innovative temperature phased anaerobic digestion technology was developed and carried out in a continuous circulating mode of mesophilic and hyperthermophilic conditions in a loop digester (F1). The performance of the newly developed digester was compared with the reference digester (F2) working at mesophilic conditions. Co-digestion of rice straw was carried out with cow manure to optimize the carbon to nitrogen ratio and to provide the essential trace elements required by microorganisms in the biochemistry of methane formation. F1 produced a higher specific methane yield (189 ± 37 L/kg volatile solids) from rice straw compared to F2 (148 ± 36 L/kg volatile solids). Anaerobic digestion efficiency was about 90 ± 20% in F1 and 70 ± 20% in F2. Mass fractions of Fe, Ni, Co, Mo, Cu, and Zn were analyzed over time. The mass fractions of Co, Mo, Cu, and Zn were stable in both digesters. While mass fractions of Fe and Ni were reduced at the end of the digestion period. However, no direct relationship between specific methane yield and reduced mass fraction of Fe and Ni was found. Co-digestion of rice straw with cow manure seems to be a good approach to provide trace elements except for Se.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Anna Detman ◽  
Michał Bucha ◽  
Laura Treu ◽  
Aleksandra Chojnacka ◽  
Łukasz Pleśniak ◽  
...  

Abstract Background During the acetogenic step of anaerobic digestion, the products of acidogenesis are oxidized to substrates for methanogenesis: hydrogen, carbon dioxide and acetate. Acetogenesis and methanogenesis are highly interconnected processes due to the syntrophic associations between acetogenic bacteria and hydrogenotrophic methanogens, allowing the whole process to become thermodynamically favorable. The aim of this study is to determine the influence of the dominant acidic products on the metabolic pathways of methane formation and to find a core microbiome and substrate-specific species in a mixed biogas-producing system. Results Four methane-producing microbial communities were fed with artificial media having one dominant component, respectively, lactate, butyrate, propionate and acetate, for 896 days in 3.5-L Up-flow Anaerobic Sludge Blanket (UASB) bioreactors. All the microbial communities showed moderately different methane production and utilization of the substrates. Analyses of stable carbon isotope composition of the fermentation gas and the substrates showed differences in average values of δ13C(CH4) and δ13C(CO2) revealing that acetate and lactate strongly favored the acetotrophic pathway, while butyrate and propionate favored the hydrogenotrophic pathway of methane formation. Genome-centric metagenomic analysis recovered 234 Metagenome Assembled Genomes (MAGs), including 31 archaeal and 203 bacterial species, mostly unknown and uncultivable. MAGs accounted for 54%–67% of the entire microbial community (depending on the bioreactor) and evidenced that the microbiome is extremely complex in terms of the number of species. The core microbiome was composed of Methanothrix soehngenii (the most abundant), Methanoculleus sp., unknown Bacteroidales and Spirochaetaceae. Relative abundance analysis of all the samples revealed microbes having substrate preferences. Substrate-specific species were mostly unknown and not predominant in the microbial communities. Conclusions In this experimental system, the dominant fermentation products subjected to methanogenesis moderately modified the final effect of bioreactor performance. At the molecular level, a different contribution of acetotrophic and hydrogenotrophic pathways for methane production, a very high level of new species recovered, and a moderate variability in microbial composition depending on substrate availability were evidenced. Propionate was not a factor ceasing methane production. All these findings are relevant because lactate, acetate, propionate and butyrate are the universal products of acidogenesis, regardless of feedstock.


2011 ◽  
Vol 64 (8) ◽  
pp. 1723-1729 ◽  
Author(s):  
H. B. Nielsen ◽  
S. Heiske

In the present study we tested four macroalgae species – harvested in Denmark – for their suitability of bioconversion to methane. In batch experiments (53 °C) methane yields varied from 132 ml g volatile solids−1 (VS) for Gracillaria vermiculophylla, 152 ml g VS−1 for Ulva lactuca, 166 ml g VS−1 for Chaetomorpha linum and 340 ml g VS−1 for Saccharina latissima following 34 days of incubation. With an organic content of 21.1% (1.5–2.8 times higher than the other algae) S. latissima seems very suitable for anaerobic digestion. However, the methane yields of U. lactuca, G. vermiculophylla and C. linum could be increased with 68%, 11% and 17%, respectively, by pretreatment with maceration. U. lactuca is often observed during ‘green tides’ in Europe and has a high cultivation potential at Nordic conditions. Therefore, U. lactuca was selected for further investigation and co-digested with cattle manure in a lab-scale continuously stirred tank reactor. A 48% increase in methane production rate of the reactor was observed when the concentration of U. lactuca in the feedstock was 40% (VS basis). Increasing the concentration to 50% had no further effect on the methane production, which limits the application of this algae at Danish centralized biogas plant.


2016 ◽  
Vol 73 (12) ◽  
pp. 2913-2920 ◽  
Author(s):  
Yue-Gan Liang ◽  
Beijiu Cheng ◽  
You-Bin Si ◽  
De-Ju Cao ◽  
Dao-Lin Li ◽  
...  

Abstract The effects of solid-state NaOH pretreatment on the efficiency of methane production from semi-dry anaerobic digestion of rose (Rosa rugosa) stalk were investigated at various NaOH loadings (0, 1, 2, and 4% (w/w)). Methane production, process stability and energy balance were analyzed. Results showed that solid-state NaOH pretreatment significantly improved biogas and methane yields of 30-day anaerobic digestion, with increases from 143.7 mL/g volatile solids (VS) added to 157.1 mL/g VS –192.1 mL/g VS added and from 81.8 mL/g VS added to 88.8 mL/g VS–117.7 mL/g VS added, respectively. Solid-state NaOH pretreatment resulted in anaerobic digestion with higher VS reduction and lower technical digestion time. The 4% NaOH-treated group had the highest methane yield of 117.7 mL/g VS added, which was 144% higher compared to the no NaOH-treated group, and the highest net energy recovery. Higher rate of lignocellulose breakage and higher process stability of anaerobic digestion facilitated methane production in the NaOH-pretreated groups.


2015 ◽  
Vol 72 (8) ◽  
pp. 1398-1403 ◽  
Author(s):  
Glenda Cea-Barcia ◽  
Gloria Moreno ◽  
Germán Buitrón

The anaerobic digestion of mixed indigenous microalgae, grown in a secondary effluent, was evaluated in batch tests at mesophilic (35°C) and thermophilic (50°C) conditions. Under mesophilic conditions, specific methane production varied from 178 to 207 mL CH4/g volatile solids (VS) and the maximum production rate varied from 8.8 to 26.1 mL CH4/(gVS day), depending on the type of microalgae culture. Lower methane parameters were observed in those cultures where Scenedesmus represents more than 95% of the microalge. The culture with the lowest digestion performances under mesophilic conditions was studied under thermophilic conditions. The increase in the incubation temperature significantly increased the specific methane production (390 mL CH4/g VS) and rate (26.0 mL CH4/(gVS day)). However, under thermophilic conditions a lag period of 30 days was observed.


2019 ◽  
Vol 10 (1) ◽  
pp. 65-76
Author(s):  
Miriam Cleide Cavalcante de Amorim ◽  
Paula Tereza De Souza Silva ◽  
Patricia Silva Barbosa ◽  
Nayara Evelyn Montefusco

The production of starch generates, as a by-product, the cassava wastewater (manipueira), which can be treated by anaerobic digestion to provide biogas and minimize its polluting potential. The most commonly utilized biomass in the anaerobic digestion is the anaerobic sludge. The literature presents, as an alternative to sludge, bovine manure and ruminal fluids, being scarce the studies with the cassava wastewater. This research evaluated the influence of temperature on the microbial ability of cattle and goat rumen in anaerobically biodegrading the manipueira in substitution to the anaerobic sludge. The cattle and goat rumen specific methanogenic activities (SMA) were compared with that of the anaerobic sludge. Subsequently, by using the inoculum which had the best SMA results, cassava wastewater biodegradability tests were performed, investigating the kinetics of the organic matter removal and methane production at 32 ° C and 39 ° C. The bovine rumen presented better results in the SMA (0,315 g COD-CH4 g VSS.d-1) and methane production (1,026 mL). The temperature of 32 °C did not influence the activity of bovine ruminal inoculum as the kinetics of the biodegradation of the manipueira did not differ for the evaluated temperatures (0.1799 d-1 at 32°C and 0.1781 d-1 at 39°C). Bovine rumen achieved glucose reduction of 76% and 80% and methane yield of 77% and 79% for the tests at 32°C and 39°C, respectively. It is inferred that this type of inoculum might be used in reactors of anaerobic digestion processes for the treatment of the cassava wastewater at the ambient temperature of the semiarid region.


Sign in / Sign up

Export Citation Format

Share Document