Analysis of environmental factors affecting methane production from high-solids organic waste

1997 ◽  
Vol 36 (6-7) ◽  
pp. 493-500 ◽  
Author(s):  
J. J. Lay ◽  
Y. Y. Li ◽  
T. Noike ◽  
J. Endo ◽  
S. Ishimoto

A simple model developed from the Gompertz equation was used to describe the cumulative methane production curve in the batch culture. By using this model, three key parameters, namely methane production rate, potential and lagphase time, in a cumulative methane production curve were exactly estimated based on the experimental data. The results indicate that each gram of dry organic waste of a sludge cake, meat, carrot, rice, potato and cabbage had a methane production potential of 450, 424, 269, 214, 203 and 96 mL, respectively. The methanogenic activity of these digesters decreased with a decrease in the moisture content. The moisture content threshold limit, at which the methanogenic activity dropped to zero, was found to be 56.6% for the sludge cake, but greater than 80% for meat, carrot and cabbage. In the high-solids sludge digestion, the relative methanogenic activity dropped from 100% to 53% when the moisture content decreased from 96% to 90%. The rate of methane production at moisture contents of 90% to 96% functioned in a pH range between 6.6 and 7.8, but optimally at pH 6.8, and the process may fail if the pH was lower than 6.1 or higher than 8.3. On the other hand, the methanogenic activity was dependent on the level of ammonium, NH4+, but not free ammonia, NH3, indicating that the NH4+ was the more significant factor rather than the NH3 in affecting the methanogenic activity of a well-acclimatized bacterial system. In the wide pH range of 6.5 to 8.5, the methanogenic activity decreased with the increase in the NH4+; dropped 10% at the NH4+-N concentration of 1670-3720 mg·L−1, 50% at 4090-5550 mg·L−1 and dropped to zero at 5880-6600 mg·L−1. However, the lagphase time was dependent on the NH3 level, but not on NH4+, and when NH3-N was higher than 500 mg·L−1, a notable shock was observed. This suggests that the NH3 level was the more sensitive factor than the NH4+ level for an unacclimatized bacterial system.

1990 ◽  
Vol 22 (12) ◽  
pp. 143-152 ◽  
Author(s):  
M. Hashimoto ◽  
M. Hiraoka

Dewatering characteristics of sewage sludge were determined by conditioning the sludge with the most effective cationic polyelectrolyte studied, and dewatering using a belt press filter. The characteristics of sludges (16 mixed, and 8 anaerobically digested) were measured for 33 factors affecting dewaterability. The correlations of sludge factors with sludge dewaterability were investigated. The results revealed the following. A factor affecting the gravitational filterability of conditioned sludge is the suspended solids concentration of raw sludge. A factor affecting the moisture content of dewatered sludge cake is viscosity of the sludge adjusted to 4.0 % of suspended solids concentration. Factors affecting the viscosity are the intrinsic viscosity of alkaline extracts, the ratio of (VSS-Fiber)/SS : Ash/SS : Fiber/SS, and the charge density of sludge particles. A factor affecting the extension degree of dewatered sludge cake is the charge density of sludge particles. Factors affecting the amount of residual solids on the filter cloths are the charge density of sludge particles and the fibrous substances content of sludge. As for polyelectrolytes, a highly cationized polyelectrolyte is effective to lower the moisture content, the extension degree and the amount of residual solids on filter cloths. And a factor affecting the required dosage of a polyelectrolyte is anionic substances content in the liquid of raw sludge.


2021 ◽  
Vol 920 (1) ◽  
pp. 012028
Author(s):  
I A Zakarya ◽  
T N T Izhar ◽  
N M Noordin ◽  
N Ibrahim ◽  
S A Kamaruddin

Abstract Rapid composting is an alternative method to reduce highly generated food waste and yard waste discarded to the landfill. This study aims to determine the effect of effective microorganisms (EM) application on the chemical and physical properties and to determine the performance and factors affecting the rapid composting process. The chemical and physical properties such as pH, temperature, moisture content, carbon-to-nitrogen (C/N) ratio and Nitrogen (N), phosphorus (P) and Potassium (K) nutrient are examined over rapid composting period in order to assess the performance of compost and effectiveness of EM in enhancing the degradation process of organic waste. There are three compost prepared which are A, B and C that received different ratio of EM which 1 L, 2 L and 3 L respectively. Based on the result obtained from the 54 days of composting conducted, compost A, B and C show no significance differences on parameters tested. The temperature obtained mostly within the range 35-38 °C, pH values are 5-9, moisture content are 20-60 % and for NPK nutrient, Total Nitrogen content are 1.3 % to 1.4 %, Total Phosphorus are within 0.10 ppm to 0.45 ppm and Potassium are within 0.8 ppm to 6.7 ppm.


2020 ◽  
pp. 341-350
Author(s):  
Di Wang ◽  
Changbin He ◽  
Haiqing Tian ◽  
Liu Fei ◽  
Zhang Tao ◽  
...  

Low productivity and high electricity consumption are considered problems of the hammer mill, which is widely used in current feed production. In this paper, the mechanical properties of corn grain ground by a hammer mill were analysed, and the key factors affecting the performance of the hammer mill were determined. The single-factor experiment and three-factor, three-level quadratic regression orthogonal experiment were carried out with the spindle speed, corn grain moisture content and number of hammers as experimental factors and the productivity and electricity consumption per ton as evaluation indexes. The results showed that the order of influence on the productivity was spindle speed > corn grain moisture content > number of hammers and that the order of influence on the electricity consumption per ton was corn grain moisture content > spindle speed > number of hammers. The parameters were optimized based on the response surface method with the following results: the spindle speed was 4306 r/min, the corn grain moisture content was 10%, and the number of hammers was 24. The validation experiment was carried out with the optimal parameters’ combination. The productivity and electricity consumption per ton were 988.12 kg/h and 5.37 kW·h/t, respectively, which were consistent with the predicted results of the model.


Author(s):  
Leilei Xiao ◽  
Eric Lichtfouse ◽  
P. Senthil Kumar ◽  
Quan Wang ◽  
Fanghua Liu

2000 ◽  
Vol 42 (10-11) ◽  
pp. 247-255 ◽  
Author(s):  
J. Paing ◽  
B. Picot ◽  
J. P. Sambuco ◽  
A. Rambaud

Sludge accumulation and the characteristics of anaerobic digestion in sludge had been investigated in a primary anaerobic lagoon. Methanogenic potential of sludge was evaluated by an anaerobic digestion test which measured the methane production rate. Sludge was sampled at several points in the lagoon to determine spatial variations and with a monthly frequency from the start-up of the lagoon to observe the development of anaerobic degradation. Maximum amounts of sludge accumulated near the inlet. The mean methane production of sludge was 2.9 ml gVS–1 d–1. Sludge near the outlet presented a greater methanogenic activity and a lesser concentration of volatile fatty acids than near the inlet. The different stages of anaerobic degradation were spatially separated, acidogenesis near the inlet and methanogenesis near the outlet. This staged distribution seemed to increase efficiency of anaerobic fermentation compared with septic tanks. Methane release at the surface of the lagoon was estimated to be very heterogeneous with a mean of 25 l m–2 d–1. The development of performance and sludge characteristics showed the rapid beginning of methanogenesis, three months after the start-up of the anaerobic lagoon. Considering the volume of accumulated sludge, it could however be expected that methanogenic activity would further increase.


Agronomy ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1952
Author(s):  
Ana Vuković ◽  
Mirna Velki ◽  
Sandra Ečimović ◽  
Rosemary Vuković ◽  
Ivna Štolfa Čamagajevac ◽  
...  

Industrialization and urbanization have led to an increased accumulation of waste materials that are transformed into a nutrient-rich and high-quality product called vermicompost by the vermicomposting process. Vermicomposting is an ecofriendly and economically favorable biotechnological process that involves the interaction of earthworms and microorganisms. Due to the importance of this process and its great potential in dealing with the consequences of waste accumulation, this review aims to provide key insights as well as highlight knowledge gaps. It is emphasized that there is a great challenge in understanding and clarifying the mechanisms involved in the vermicomposting process. The optimization of the factors affecting the possible application of vermicompost is crucial for obtaining the final product. Information on the composition of bacterial communities, amount of vermicompost, effect on heavy metal content, plant pathogens, diseases and organic waste selection is here recognized as currently the most important issues to be addressed. By answering these knowledge gaps, it is possible to enable wider utilization of vermicompost products.


2021 ◽  
Vol 37 (4) ◽  
pp. 615-621
Author(s):  
Jing Bai ◽  
Shaochun Ma ◽  
Jiwei Hu ◽  
Yi Wei ◽  
Fenglei Wang ◽  
...  

Highlights This article focuses on the tensile properties of sugarcane leaves. The moisture content and sheath diameter were selected as test factors, and the test index was the stalk-leaf connecting force. The load-displacement curves of stalks and leaves were plotted. Two-way ANOVA was also discussed. Abstract . The tensile properties of sugarcane leaves are critical factors affecting the harvesting quality of sugarcane harvesters. Thus, it is important to investigate the tensile properties of sugarcane stalks and leaves. The selected test factors were leaf moisture content and sheath diameter, and the stalk-leaf connecting force was selected as test index. The tests were conducted with two moisture content levels of 15% and 20%, and three sheath diameters of 22, 26, and 30 mm. The stress-strain curves of stalks and leaves were plotted to show how the tensile force varied during the tensile test. The results showed that there was a strong linear correlation between the stalk-leaf connecting force and diameter of leaf sheath, and the connecting force also increased with the increasing moisture content. In addition, leaf tensile forces in longitudinal direction were much larger than in transverse direction. Two-way ANOVA revealed that both of the moisture contents (A) and sheath diameters (B) had significant effects on the stalk-leaf connecting force (p < 0.01), however, the interaction between A and B was not significant (p > 0.1). This study provides a theoretical reference for the design and improvement of crop dividers of sugarcane harvester. Keywords: Moisture content, Sheath diameter, Stalk-leaf connecting force, Sugarcane leaves, Universal testing machine, Tensile properties.


TAPPI Journal ◽  
2020 ◽  
Vol 19 (7) ◽  
pp. 330-340
Author(s):  
RICHARD KEREKES ◽  
DAVID MCDONALD

Equilibrium moisture is a limiting factor in achieving high solids in the later stages of pressing or pressing low basis weight grades. We have developed a model that relates equilibrium moisture directly to the pore size distribution of fibers as measured by the solute exclusion technique. The model shows that chemical pulping and refining increase equilibrium moisture by increasing pore volume at given pore sizes in fibers, which leads to lower pressed solids and greater energy expenditure in the dryer section. Means to increase equilibrium moisture without compromising pulp strength are briefly discussed.


Sign in / Sign up

Export Citation Format

Share Document