The DLP1 mutant of the yeast Saccharomyces cerevisiae with an increased copy number of the 2μ plasmid shows a shortened lifespan

1999 ◽  
Vol 110 (1-2) ◽  
pp. 119-129 ◽  
Author(s):  
Zhaojun Xu ◽  
Kazuhiro Mitsui ◽  
Mitsuyoshi Motizuki ◽  
So-Ichi Yaguchi ◽  
Kunio Tsurugi
Genome ◽  
1988 ◽  
Vol 30 (5) ◽  
pp. 690-696 ◽  
Author(s):  
Wendy H. Horsfall ◽  
Ronald E. Pearlman

Genomic libraries containing micronuclear DNA sequences from Tetrahymena thermophila have been constructed in a vector containing ARS1, SUP11, and ura3 sequences from the yeast Saccharomyces cerevisiae. When transformed into a strain of S. cerevisiae carrying a suppressible ochre mutation in the ade2 gene, viable transformants are obtained only if the transforming plasmid is maintained at a copy number of one or two per cell. Mitotic segregation of the plasmid is easily assessed in a colour assay of transformants. Using this assay system, we showed that micronuclear DNA from Tetrahymena does not contain sequences that confer mitotic stability on yeast ARS-containing plasmids; i.e., sequences that function analogously to yeast centromere sequences. One transformant was analyzed that carries Tetrahymena sequences that maintain the copy number of the ARS plasmid at one or two per cell. However, these sequences do not confer mitotic stability on the transformants and they confer a phenotype in this assay similar to that of the REP3 gene of the yeast 2 μm plasmid.Key words: mitotic stability, centromere, Tetrahymena, Saccharomyces.


Genetics ◽  
1993 ◽  
Vol 135 (3) ◽  
pp. 711-718 ◽  
Author(s):  
R L Keil ◽  
A D McWilliams

Abstract The preservation of sequence homogeneity and copy number of tandemly repeated genes may require specific mechanisms or regulation of recombination. We have identified mutations that specifically affect recombination among natural repetitions in the yeast Saccharomyces cerevisiae. The rrm3 mutation stimulates mitotic recombination in the naturally occurring tandem repeats of the rDNA and copper chelatin (CUP1) genes. This mutation does not affect recombination of several other types of repeated genes tested including Ty elements, mating type information and duplications created by transformation. In addition to stimulating exchange among the multiple CUP1 repeats at their natural chromosomal location, rrm3 also increases recombination of a duplication of CUP1 units present at his4. This suggests that the RRM3 gene may encode a sequence-specific factor that contributes to a global suppression of mitotic exchange in sequences that can be maintained as tandem arrays.


1994 ◽  
Vol 14 (9) ◽  
pp. 6306-6316 ◽  
Author(s):  
A R Butler ◽  
J H White ◽  
Y Folawiyo ◽  
A Edlin ◽  
D Gardiner ◽  
...  

The Kluyveromyces lactis toxin causes an arrest of sensitive yeast cells in the G1 phase of the cell division cycle. Two complementary genetic approaches have been undertaken in the yeast Saccharomyces cerevisiae to understand the mode of action of this toxin. First, two sequences conferring toxin resistance specifically in high copy number have been isolated and shown to encode a tRNA(Glu3) and a novel polypeptide. Disruption of the latter sequence in the yeast genome conferred toxin resistance and revealed that it was nonessential, while the effect of the tRNA(Glu)3 was highly specific and mediated resistance by affecting the toxin's target. An alpha-specific, copy number-independent suppressor of toxin sensitivity was also isolated and identified as MATa, consistent with the observation that diploid cells are partially resistant to the toxin. Second, in a comprehensive screen for toxin-resistant mutants, representatives of 13 complementation groups have been obtained and characterized to determine whether they are altered in the toxin's intracellular target. Of 10 genes found to affect the target process, one (KTI12) was found to encode the novel polypeptide previously identified as a multicopy resistance determinant. Thus, both loss of KTI12 function and elevated KTI12 copy number can cause resistance to the K. lactis toxin.


1993 ◽  
Vol 13 (12) ◽  
pp. 7553-7565
Author(s):  
Q Xu ◽  
G C Johnston ◽  
R A Singer

The CDC68 gene (also called SPT16) encodes a transcription factor for the expression of a diverse set of genes in the budding yeast Saccharomyces cerevisiae. To identify other proteins that are functionally related to the Cdc68 protein, we searched for genetic suppressors of a cdc68 mutation. Four suppressor genes in which mutations reverse the temperature sensitivity imposed by the cdc68-1 mutation were found. We show here that one of the suppressor genes is the previously reported SAN1 gene; san1 mutations were originally identified as suppressors of a sir4 mutation, implicated in the chromatin-mediated transcriptional silencing of the two mating-type loci HML and HMR. Each san1 mutation, including a san1 null allele, reversed all aspects of the cdc68 mutant phenotype. Conversely, increased copy number of the wild-type SAN1 gene lowered the restrictive temperature for the cdc68-1 mutation. Our findings suggest that the San1 protein antagonizes the transcriptional activator function of the Cdc68 protein. The identification of san1 mutations as suppressors of cdc68 mutations suggests a role for Cdc68 in chromatin structure.


1994 ◽  
Vol 14 (9) ◽  
pp. 6306-6316
Author(s):  
A R Butler ◽  
J H White ◽  
Y Folawiyo ◽  
A Edlin ◽  
D Gardiner ◽  
...  

The Kluyveromyces lactis toxin causes an arrest of sensitive yeast cells in the G1 phase of the cell division cycle. Two complementary genetic approaches have been undertaken in the yeast Saccharomyces cerevisiae to understand the mode of action of this toxin. First, two sequences conferring toxin resistance specifically in high copy number have been isolated and shown to encode a tRNA(Glu3) and a novel polypeptide. Disruption of the latter sequence in the yeast genome conferred toxin resistance and revealed that it was nonessential, while the effect of the tRNA(Glu)3 was highly specific and mediated resistance by affecting the toxin's target. An alpha-specific, copy number-independent suppressor of toxin sensitivity was also isolated and identified as MATa, consistent with the observation that diploid cells are partially resistant to the toxin. Second, in a comprehensive screen for toxin-resistant mutants, representatives of 13 complementation groups have been obtained and characterized to determine whether they are altered in the toxin's intracellular target. Of 10 genes found to affect the target process, one (KTI12) was found to encode the novel polypeptide previously identified as a multicopy resistance determinant. Thus, both loss of KTI12 function and elevated KTI12 copy number can cause resistance to the K. lactis toxin.


Genetics ◽  
1990 ◽  
Vol 124 (3) ◽  
pp. 533-545 ◽  
Author(s):  
E J Louis ◽  
J E Haber

Abstract The subtelomeric Y' repeated sequence families in two divergent strains of the yeast Saccharomyces cerevisiae have been characterized in terms of copy number, location and restriction site differences. The strain YP1 has 26 to 30 Y's that fall into two previously described, long (6.7 kb) and short (5.2 kb), size classes. These Y's reside at 19 of the 32 chromosome ends and are concentrated in the higher molecular weight chromosomes. Five ends contain tandem arrays, each of which has only one size class of Y's. There is restriction site homogeneity among the Y's of YP1 even between size classes. The Y's of strain Y55 contrast sharply with the Y's of YP1 in terms of copy number, location and sequence differences. There are 14 to 16 Y's, both long and short, most of which are found at different chromosome ends than those of YP1. None of these are tandemly arrayed. Four to six of the Y's appear degenerate in that they have homology with a telomere distal end Y' probe but no homology with sequences at the telomere proximal end. The majority of the Y55 Y's have the same restriction sites as in YP1. Despite the conservation of restriction sites among Y's, a great deal of restriction fragment length heterogeneity between the strains is observed. The characterized Y' repeated sequence families provide an experimental system in which repeated sequence interactions and subsequent evolution can be studied.


1993 ◽  
Vol 13 (12) ◽  
pp. 7553-7565 ◽  
Author(s):  
Q Xu ◽  
G C Johnston ◽  
R A Singer

The CDC68 gene (also called SPT16) encodes a transcription factor for the expression of a diverse set of genes in the budding yeast Saccharomyces cerevisiae. To identify other proteins that are functionally related to the Cdc68 protein, we searched for genetic suppressors of a cdc68 mutation. Four suppressor genes in which mutations reverse the temperature sensitivity imposed by the cdc68-1 mutation were found. We show here that one of the suppressor genes is the previously reported SAN1 gene; san1 mutations were originally identified as suppressors of a sir4 mutation, implicated in the chromatin-mediated transcriptional silencing of the two mating-type loci HML and HMR. Each san1 mutation, including a san1 null allele, reversed all aspects of the cdc68 mutant phenotype. Conversely, increased copy number of the wild-type SAN1 gene lowered the restrictive temperature for the cdc68-1 mutation. Our findings suggest that the San1 protein antagonizes the transcriptional activator function of the Cdc68 protein. The identification of san1 mutations as suppressors of cdc68 mutations suggests a role for Cdc68 in chromatin structure.


Sign in / Sign up

Export Citation Format

Share Document