Lagrangian modeling of mercury air emission, transport and deposition: An analysis of model sensitivity to emissions uncertainty

1998 ◽  
Vol 213 (1-3) ◽  
pp. 1-12 ◽  
Author(s):  
O.Russell Bullock ◽  
Katherine A Brehme ◽  
George R Mapp
1991 ◽  
Vol 24 (12) ◽  
pp. 29-32
Author(s):  
C. W. Keffer

Monsanto is committed to being a leader in reducing waste discharges to the environment. The Company announced in June 1988 a commitment to reduce air emissions of hazardous materials by 90% by the end of 1992. In addition, Monsanto Agricultural Company established a further goal to reduce the discharge of organic and hazardous inorganic materials to all environmental media. Projects have been identified for the Agricultural Company to achieve the 90% air emission reduction goal and to reduce projected 1995 waste discharges from 150 million pounds to 50 million pounds.


Atmosphere ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 278 ◽  
Author(s):  
Niloofar Ordou ◽  
Igor E. Agranovski

Particle size distribution in biomass smoke was observed for different burning phases, including flaming and smouldering, during the combustion of nine common Australian vegetation representatives. Smoke particles generated during the smouldering phase of combustions were found to be coarser as compared to flaming aerosols for all hard species. In contrast, for leafy species, this trend was inversed. In addition, the combustion process was investigated over the entire duration of burning by acquiring data with one second time resolution for all nine species. Particles were separately characterised in two categories: fine particles with dominating diffusion properties measurable with diffusion-based instruments (Dp < 200 nm), and coarse particles with dominating inertia (Dp > 200 nm). It was found that fine particles contribute to more than 90 percent of the total fresh smoke particles for all investigated species.


Mathematics ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 274
Author(s):  
Derek G. Spear ◽  
Anthony N. Palazotto ◽  
Ryan A. Kemnitz

A series of computational models and simulations were conducted for determining the dynamic responses of a solid metal projectile impacting a target under a prescribed high strain rate loading scenario in three-dimensional space. The focus of this study was placed on two different modeling techniques within finite element analysis available in the Abaqus software suite. The first analysis technique relied heavily on more traditional Lagrangian analysis methods utilizing a fixed mesh, while still taking advantage of the finite difference integration present under the explicit analysis approach. A symmetry reduced model using the Lagrangian coordinate system was also developed for comparison in physical and computational performance. The second analysis technique relied on a mixed model that still made use of some Lagrangian modeling, but included smoothed particle hydrodynamics techniques as well, which are mesh free. The inclusion of the smoothed particle hydrodynamics was intended to address some of the known issues in Lagrangian analysis under high displacement and deformation. A comparison of the models was first performed against experimental results as a validation of the models, then the models were compared against each other based on closeness to experimentation and computational performance.


Sign in / Sign up

Export Citation Format

Share Document