pore scale network
Recently Published Documents


TOTAL DOCUMENTS

60
(FIVE YEARS 6)

H-INDEX

19
(FIVE YEARS 0)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rodrigo F. Neumann ◽  
Mariane Barsi-Andreeta ◽  
Everton Lucas-Oliveira ◽  
Hugo Barbalho ◽  
Willian A. Trevizan ◽  
...  

AbstractPermeability is the key parameter for quantifying fluid flow in porous rocks. Knowledge of the spatial distribution of the connected pore space allows, in principle, to predict the permeability of a rock sample. However, limitations in feature resolution and approximations at microscopic scales have so far precluded systematic upscaling of permeability predictions. Here, we report fluid flow simulations in pore-scale network representations designed to overcome such limitations. We present a novel capillary network representation with an enhanced level of spatial detail at microscale. We find that the network-based flow simulations predict experimental permeabilities measured at lab scale in the same rock sample without the need for calibration or correction. By applying the method to a broader class of representative geological samples, with permeability values covering two orders of magnitude, we obtain scaling relationships that reveal how mesoscale permeability emerges from microscopic capillary diameter and fluid velocity distributions.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1259
Author(s):  
Iselin C. Salmo ◽  
Ken S. Sorbie ◽  
Arne Skauge

Several experimental studies have shown significant improvement in heavy oil recovery with polymers displaying different types of rheology, and the effect of rheology has been shown to be important. These experimental studies have been designed to investigate why this is so by applying a constant flow rate and the same polymer effective viscosity at this injection rate. The types of rheology studied vary from Newtonian and shear thinning behavior to complex rheology involving shear thinning and thickening behavior. The core flood experiments show a significantly higher oil recovery with polyacrylamide (HPAM), which exhibits shear thinning/thickening behavior compared to biopolymers like Xanthan, which is purely shear thinning. Various reasons for these observed oil recovery results have been conjectured, but, to date, a clear explanation has not been conclusively established. In this paper, we have investigated the theoretical rationale for these results by using a dynamic pore scale network model (DPNM), which can model imbibition processes (water injection) in porous media and also polymer injection. In the DPNM, the polymer rheology can be shear thinning, shear thinning/thickening, or Newtonian (constant viscosity). Thus, the local effective viscosity in a pore within the DPNM depends on the local shear rate in that pore. The predicted results using this DPNM show that the polymer causes changes in the local flow velocity field, which, as might be expected, are different for different rheological models, and the changes in the velocity profile led to local diversion of flow. This, in turn, led to different oil recovery levels in imbibition. However, the critical result is that the DPNM modelling shows exactly the same trend as was observed in the experiments, viz. that the shear thinning/thickening polymer gave the highest oil recovery, followed by the Newtonian Case and the purely shear thinning polymer gave the lowest recover, but this latter case was still above the waterflood result. The DPNM simulations showed that the shear-thinning/thickening polymer show a stabilized frontal velocity and increased oil mobilization, as observed in the experiments. Simulations for the shear-thinning polymer show that, in high-rate bonds, the average viscosity is greatly reduced, and this causes enhanced water fingering compared to the Newtonian polymer case. No other a priori model of the two-phase fluid physics of imbibition, coupled with the polymer rheology, has achieved this degree of predictive explanation, of these experimental observations, to our knowledge.


Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4709
Author(s):  
Xiukun Wang ◽  
James J. Sheng

Spontaneous water imbibition plays an imperative role in the development of shale or tight oil reservoirs. Spontaneous water imbibition is helpful in the extraction of crude oil from the matrix, although it decreases the relative permeability of the hydrocarbon phase dramatically. The dynamic pore-scale network modeling of water imbibition in shale and tight reservoirs is presented in this work; pore network generation, local capillary pressure function, conductance calculation and boundary conditions for imbibition are all presented in detail in this paper. The pore network is generated based on the characteristics of Barnett shale formations, and the corresponding laboratory imbibition experiments are matched using this established dynamic pore network model. The effects of the wettability, throat aspect ratio, viscosity, shape factor, micro-fractures, etc. are all investigated in this work. Attempts are made to investigate the water imbibition mechanisms from a micro-scale perspective. According to the simulated results, wettability dominates the imbibition characteristics. Besides this, the viscous effects including viscosity, initial capillary pressure and micro-fractures increase the imbibition rate, while the final recovery factor is more controlled by the capillarity effect including the cross-area shape factor, contact angle and the average pore-throat aspect ratio.


2019 ◽  
Vol 71 ◽  
pp. 103005
Author(s):  
Nijat Hakimov ◽  
Arsalan Zolfaghari ◽  
Amirmasoud Kalantari-Dahaghi ◽  
Shahin Negahban ◽  
Gary Gunter

2018 ◽  
Author(s):  
Nijat Hakimov ◽  
Arsalan Zolfaghari ◽  
Amirmasoud Kalantari-Dahaghi ◽  
Shahin Negahban ◽  
Gary Gunter

Sign in / Sign up

Export Citation Format

Share Document