Quantitative polymerase chain reaction and solid-phase capture nucleic acid detection

Author(s):  
Chris S. Martin ◽  
John C. Voyta ◽  
Irena Bronstein
2018 ◽  
Vol 10 (38) ◽  
pp. 4671-4679 ◽  
Author(s):  
Geoffrey Mulberry ◽  
Alissa Vuillier ◽  
Manjusha Vaidya ◽  
Kiminobu Sugaya ◽  
Brian N. Kim

Sample preparation is an essential process that precedes nucleic acid detections which use quantitative polymerase chain reaction (qPCR).


2012 ◽  
Vol 422 (2) ◽  
pp. 89-95 ◽  
Author(s):  
Richard Lai ◽  
Fang Liang ◽  
Darnley Pearson ◽  
Graeme Barnett ◽  
David Whiley ◽  
...  

2018 ◽  
Vol 38 (6) ◽  
Author(s):  
Haiyi Li ◽  
Ruolan Bai ◽  
Zhenyu Zhao ◽  
Lvyan Tao ◽  
Mingbiao Ma ◽  
...  

Polymerase chain reaction (PCR) is a molecular biology technique used to multiply certain deoxyribonucleic acid (DNA) fragments. It is a common and indispensable technique that has been applied in many areas, especially in clinical laboratories. The third generation of polymerase chain reaction, droplet digital polymerase chain reaction (ddPCR), is a biotechnological refinement of conventional polymerase chain reaction methods that can be used to directly quantify and clonally amplify DNA. Droplet digital polymerase chain reaction is now widely used in low-abundance nucleic acid detection and is useful in diagnosis of infectious diseases. Here, we summarized the potential advantages of droplet digital polymerase chain reaction in clinical diagnosis of infectious diseases, including viral diseases, bacterial diseases and parasite infections, concluded that ddPCR provides a more sensitive, accurate, and reproducible detection of low-abundance pathogens and may be a better choice than quantitative polymerase chain reaction for clinical applications in the future.


Diagnostics ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 775
Author(s):  
Won-Suk Choi ◽  
Ju Hwan Jeong ◽  
Halcyon Dawn G. Nicolas ◽  
Sol Oh ◽  
Khristine Joy C. Antigua ◽  
...  

The threat posed by coronaviruses to human health has necessitated the development of a highly specific and sensitive viral detection method that could differentiate between the currently circulating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other SARS-related coronaviruses (SARSr-CoVs). In this study, we developed a peptide nucleic acid (PNA)-based real-time quantitative polymerase chain reaction (RT-qPCR) assay targeting the N gene to efficiently discriminate SARS-CoV-2 from other SARSr-CoVs in human clinical samples. Without compromising the sensitivity, this method significantly enhanced the specificity of SARS-CoV-2 detection by 100-fold as compared to conventional RT-qPCR. In addition, we designed an RT-qPCR method for the sensitive and universal detection of ORF3ab-E genes of SARSr-CoV with a limit of detection (LOD) of 3.3 RNA copies per microliter. Thus, the developed assay serves as a confirmative dual-target detection method. Our PNA-mediated dual-target RT-qPCR assay can detect clinical SARS-CoV-2 samples in the range of 18.10–35.19 Ct values with an 82.6–100% detection rate. Furthermore, our assay showed no cross-reactions with other coronaviruses such as human coronaviruses (229E, NL63, and OC43) and Middle East respiratory syndrome coronavirus, influenza viruses (Type B, H1N1, H3N2, HPAI H5Nx, and H7N9), and other respiratory disease-causing viruses (MPV, RSV A, RSV B, PIV, AdV, and HRV). We, thus, developed a PNA-based RT-qPCR assay that differentiates emerging pathogens such as SARS-CoV-2 from closely related viruses such as SARSr-CoV and allows diagnosis of infections related to already identified or new coronavirus strains.


2017 ◽  
Vol 23 (1) ◽  
Author(s):  
N.NANDHA KUMAR ◽  
K. SOURIANATHA SUNDARAM ◽  
D. SUDHAKAR ◽  
K.K. KUMAR

Excessive presence of polysaccharides, polyphenol and secondary metabolites in banana plant affects the quality of DNA and it leads to difficult in isolating good quality of DNA. An optimized modified CTAB protocol for the isolation of high quality and quantity of DNA obtained from banana leaf tissues has been developed. In this protocol a slight increased salt (NaCl) concentration (2.0M) was used in the extraction buffer. Polyvinylpyrrolidone (PVP) and Octanol were used for the removal of polyphenols and polymerase chain reaction (PCR) inhibitors. Proteins like various enzymes were degraded by Proteinase K and removed by centrifugation from plant extract during the isolation process resulting in pure genomic DNA, ready to use in downstream applications including PCR, quantitative polymerase chain reaction (qPCR), ligation, restriction and sequencing. This protocol yielded a high molecular weight DNA isolated from polyphenols rich leaves of Musa spp which was free from contamination and colour. The average yields of total DNA from leaf ranged from 917.4 to 1860.9 ng/ìL. This modified CTAB protocol reported here is less time consuming 4-5h, reproducible and can be used for a broad spectrum of plant species which have polyphenol and polysaccharide compounds.


Sign in / Sign up

Export Citation Format

Share Document