Chapter 8 Three-dimensional magnetotelluric modeling and inversion: Application to sub-salt imaging

Author(s):  
Gregory A. Newman ◽  
G. Michael Hoversten ◽  
David L. Alumbaugh
2009 ◽  
Vol 30 (05) ◽  
pp. 432-438 ◽  
Author(s):  
Akira Goto ◽  
Hisao Moritomo ◽  
Tomonobu Itohara ◽  
Tetsu Watanabe ◽  
Kazuomi Sugamoto

IUCrData ◽  
2016 ◽  
Vol 1 (12) ◽  
Author(s):  
Ahmed Moussaif ◽  
Youssef Ramli ◽  
Nada Kheira Sebbar ◽  
El Mokhtar Essassi ◽  
Joel T. Mague

The asymmetric unit of the title compound, C9H8N2S, consists of two independent molecules (AandB) differing in the conformation of the thiazole ring: twisted for moleculeAand planar for moleculeB. In the crystal, molecules stack along thecaxis in alternatingAandBlayers. Within the layers, molecules are linked by C—H...π interactions, and inversion-relatedBmolecules are linked by offset π–π interactions [inter-centroid distance = 3.716 (1) Å]. The two molecules are also linked by a C—H...N hydrogen bond, which results finally in the formation of a three-dimensional structure.


Geosphere ◽  
2017 ◽  
Vol 13 (6) ◽  
pp. 2017-2040 ◽  
Author(s):  
Songwoot Naviset ◽  
Christopher K. Morley ◽  
Diako H. Naghadeh ◽  
Jaydeep Ghosh

2018 ◽  
Vol 153 ◽  
pp. 75-89 ◽  
Author(s):  
Hui Cao ◽  
Kunpeng Wang ◽  
Tao Wang ◽  
Boguang Hua

Author(s):  
Fabian Denner ◽  
Fabien Evrard ◽  
Alfonso Arturo Castrejón-Pita ◽  
José Rafael Castrejón-Pita ◽  
Berend van Wachem

AbstractThe evolution of the capillary breakup of a liquid jet under large excitation amplitudes in a parameter regime relevant to inkjet printing is analysed using three-dimensional numerical simulations. The results exhibit a reversal of the breakup length of the jet occurring when the velocity scales associated with the excitation of the jet and surface tension are comparable, and an inversion of the breakup from front-pinching to back-pinching at sufficiently large excitation amplitudes. Both phenomena are shown to be associated with the formation of vortex rings and a local flow obstruction inside the jet, which modify the evolution of the jet by locally reducing or even reversing the growth of the capillary instability. Hence, this study provides a mechanism for the well-known breakup reversal and breakup inversion, which are both prominent phenomena in inkjet printing. An empirical similarity model for the reversal breakup length is proposed, which is shown to be valid throughout the considered range of characteristic parameters. Hence, even though the fluid dynamics observed in capillary jet breakup with large excitation amplitudes are complex, the presented findings allow an accurate prediction of the behaviour of jets in many practically relevant situations, especially continuous inkjet printing.


2010 ◽  
Vol 9 (3) ◽  
pp. 297-304 ◽  
Author(s):  
T.M. Millington ◽  
N.J. Cassidy ◽  
L. Nuzzo ◽  
L. Crocco ◽  
F. Soldovieri ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document