Sedimentary deposits associated with the July 9th 1956 Aegean Sea tsunami

1996 ◽  
Vol 21 (1-2) ◽  
pp. 51-55 ◽  
Author(s):  
D.T.M. Dominey-Howes
2017 ◽  
Vol 43 (2) ◽  
pp. 579
Author(s):  
S. Bellas ◽  
H. Keupp

Most of the basal Neogene sediments of Crete Island (South Aegean Sea) were unconformably deposited during synsedimentary extensional tectonics and subsequent transgression on the basement. This work mainly focuses on the marine stratigraphy of south central Crete and specifically on the sedimentary deposits of the Gortys subbasin-area located in the basin of Messara. Four selected profiles north of Gortys ancient ruins (Heraklion Province) are lithostratigraphically presented. Profiles Gortys-1 and -2 (combined to one: 1+2) represent the basal Neogene deposits (older strata-commence of sedimentation) and are interpreted as of fluviatile to lagoonal origin, while profiles Gortys-4 and - 4a are considered the younger, marine development of the Gortys subbasin. Between profiles –4 and –4a are developed evaporites of the Messinian Salinity Crisis (MSC). Profiles are biostratigraphically studied and correlated on the basis of either identified macrofossils or calcareous and siliceous nannofossils. The recorded assemblages range in age from Serravallian-Tortonian to Messinian and Zanclean respectively. The good preservation and abundance of the fossil phytoplankton establishes a well-constrained biostratigraphic framework, which will further contribute to the understanding of the evolution of the Messara sedimentary basin.


Palaeobotany ◽  
2019 ◽  
Vol 10 ◽  
pp. 13-179
Author(s):  
L. B. Golovneva

The Chingandzha flora comes from the volcanic-sedimentary deposits of the Chingandzha Formation (the Okhotsk-Chukotka volcanic belt, North-East of Russia). The main localities of the Chingandzha flora are situated in the Omsukchan district of the Magadan Region: on the Tap River (basin of the middle course of the Viliga River), on the Kananyga River, near the mouth of the Rond Creek, and in the middle reaches of the Chingandzha River (basin of the Tumany River). The Chingandzha flora includes 23 genera and 33 species. Two new species (Taxodium viligense Golovn. and Cupressinocladus shelikhovii Golovn.) are described, and two new combinations (Arctopteris ochotica (Samyl.) Golovn. and Dalembia kryshtofovichii (Samyl.) Golovn.) are created. The Chingandzha flora consists of liverworts, horsetails, ferns, seed ferns, ginkgoaleans, conifers, and angiosperms. The main genera are Arctop teris, Osmunda, Coniopteris, Cladophlebis, Ginkgo, Sagenoptepis, Sequoia, Taxodium, Metasequoia, Cupressinocladus, Protophyllocladus, Pseudoprotophyllum, Trochodendroides, Dalembia, Menispermites, Araliaephyllum, Quereuxia. The Chingandzha flora is distinct from other floras of the Okhotsk-Chukotka volcanic belt (OCVB) in predominance of flowering plants and in absence of the Early Cretaceous relicts such as Podozamites, Phoenicopsis and cycadophytes. According to its systematic composition and palaeoecological features, the Chingandzha flora is similar to the Coniacian Kaivayam and Tylpegyrgynay floras of the North-East of Russia, which were distributed at coastal lowlands east of the mountain ridges of the OCVB. Therefore, the age of the Chingandzha flora is determined as the Coniacian. This flora is assigned to the Kaivayam phase of the flora evolution and to the Anadyr Province of the Siberian-Canadian floristic realm. The Chingandzha flora is correlated with the Coniacian Aleeky flora from the Viliga-Tumany interfluve area and with other Coniacian floras of the OCVB: the Chaun flora of the Central Chukotka, the Kholchan flora of the Magadan Region and the Ul’ya flora of the Ul’ya Depression.


2002 ◽  
Author(s):  
Donald J. Swift ◽  
Alan W. Niedoroda ◽  
Christopher W. Reed

Author(s):  
Nikolay Esin ◽  
Nikolay Esin ◽  
Vladimir Ocherednik ◽  
Vladimir Ocherednik

A mathematical model describing the change in the Black Sea level depending on the Aegean Sea level changes is presented in the article. Calculations have shown that the level of the Black Sea has been repeating the course of the Aegean Sea level for the last at least 6,000 years. And the level of the Black Sea above the Aegean Sea level in the tens of centimeters for this period of time.


Sign in / Sign up

Export Citation Format

Share Document