Calcium-induced calcium release in smooth muscle: the case for loose coupling

2003 ◽  
Vol 83 (3) ◽  
pp. 171-191 ◽  
Author(s):  
Michael I. Kotlikoff
2000 ◽  
Vol 115 (5) ◽  
pp. 653-662 ◽  
Author(s):  
M.L. Collier ◽  
G. Ji ◽  
Y.-X. Wang ◽  
M.I. Kotlikoff

Calcium-induced calcium release (CICR) has been observed in cardiac myocytes as elementary calcium release events (calcium sparks) associated with the opening of L-type Ca2+ channels. In heart cells, a tight coupling between the gating of single L-type Ca2+ channels and ryanodine receptors (RYRs) underlies calcium release. Here we demonstrate that L-type Ca2+ channels activate RYRs to produce CICR in smooth muscle cells in the form of Ca2+ sparks and propagated Ca2+ waves. However, unlike CICR in cardiac muscle, RYR channel opening is not tightly linked to the gating of L-type Ca2+ channels. L-type Ca2+ channels can open without triggering Ca2+ sparks and triggered Ca2+ sparks are often observed after channel closure. CICR is a function of the net flux of Ca2+ ions into the cytosol, rather than the single channel amplitude of L-type Ca2+ channels. Moreover, unlike CICR in striated muscle, calcium release is completely eliminated by cytosolic calcium buffering. Thus, L-type Ca2+ channels are loosely coupled to RYR through an increase in global [Ca2+] due to an increase in the effective distance between L-type Ca2+ channels and RYR, resulting in an uncoupling of the obligate relationship that exists in striated muscle between the action potential and calcium release.


2020 ◽  
Vol 182 ◽  
pp. 114222
Author(s):  
Belén Climent ◽  
Elvira Santiago ◽  
Ana Sánchez ◽  
Mercedes Muñoz-Picos ◽  
Francisco Pérez–Vizcaíno ◽  
...  

2000 ◽  
Vol 35 (1) ◽  
pp. 37-45 ◽  
Author(s):  
Ningjun Li ◽  
Ai-Ping Zou ◽  
Zhi-Dong Ge ◽  
William B Campbell ◽  
Pin-Lan Li

2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Natsumi Miyazaki ◽  
Takayuki Kobayashi ◽  
Takako Komiya ◽  
Toshio Okada ◽  
Yusuke Ishida ◽  
...  

Abstract Background Malignant hyperthermia (MH) is a rare genetic disease characterized by the development of very serious symptoms, and hence prompt and appropriate treatment is required. However, postoperative MH is very rare, representing only 1.9% of cases as reported in the North American Malignant Hyperthermia Registry (NAMHR). We report a rare case of a patient who developed sudden postoperative hyperthermia after mastectomy, which was definitively diagnosed as MH by the calcium-induced calcium release rate (CICR) measurement test. Case presentation A 61-year-old Japanese woman with a history of stroke was hospitalized for breast cancer surgery. General anesthesia was introduced by propofol, remifentanil, and rocuronium. After intubation, anesthesia was maintained using propofol and remifentanil, and mastectomy and muscle flap reconstruction surgery was performed and completed without any major problems. After confirming her spontaneous breathing, sugammadex was administered and she was extubated. Thereafter, systemic shivering and masseter spasm appeared, and a rapid increase in body temperature (maximum: 38.9 °C) and end-tidal carbon dioxide (ETCO2) (maximum: 59 mmHg) was noted. We suspected MH and started cooling the body surface of the axilla, cervix, and body trunk, and administered chilled potassium-free fluid and dantrolene. After her body temperature dropped and her shivering improved, dantrolene administration was ended, and finally she was taken to the intensive care unit (ICU). Body cooling was continued within the target range of 36–37 °C in the ICU. No consciousness disorder, hypotension, increased serum potassium level, metabolic acidosis, or cola-colored urine was observed during her ICU stay. Subsequently, her general condition improved and she was discharged on day 12. Muscle biopsy after discharge was performed and provided a definitive diagnosis of MH. Conclusions The occurrence of MH can be life-threatening, but its frequency is very low, and genetic testing and muscle biopsy are required to confirm the diagnosis. On retrospective evaluation using the malignant hyperthermia scale, the present case was almost certainly that of a patient with MH. Prompt recognition and immediate treatment with dantrolene administration and body cooling effectively reversed a potentially fatal syndrome. This was hence a valuable case of a patient with postoperative MH that led to a confirmed diagnosis by CICR.


2012 ◽  
Vol 32 (12) ◽  
pp. 4271-4283 ◽  
Author(s):  
Z. Qin ◽  
X. Zhou ◽  
M. Gomez-Smith ◽  
N. R. Pandey ◽  
K. F. H. Lee ◽  
...  

2002 ◽  
Vol 119 (6) ◽  
pp. 533-543 ◽  
Author(s):  
Guangju Ji ◽  
Robert J. Barsotti ◽  
Morris E. Feldman ◽  
Michael I. Kotlikoff

Smooth muscle cells undergo substantial increases in length, passively stretching during increases in intraluminal pressure in vessels and hollow organs. Active contractile responses to counteract increased transmural pressure were first described almost a century ago (Bayliss, 1902) and several mechanisms have been advanced to explain this phenomenon. We report here that elongation of smooth muscle cells results in ryanodine receptor–mediated Ca2+ release in individual myocytes. Mechanical elongation of isolated, single urinary bladder myocytes to ∼120% of slack length (ΔL = 20) evoked Ca2+ release from intracellular stores in the form of single Ca2+ sparks and propagated Ca2+ waves. Ca2+ release was not due to calcium-induced calcium release, as release was observed in Ca2+-free extracellular solution and when free Ca2+ ions in the cytosol were strongly buffered to prevent increases in [Ca2+]i. Stretch-induced calcium release (SICR) was not affected by inhibition of InsP3R-mediated Ca2+ release, but was completely blocked by ryanodine. Release occurred in the absence of previously reported stretch-activated currents; however, SICR evoked calcium-activated chloride currents in the form of transient inward currents, suggesting a regulatory mechanism for the generation of spontaneous currents in smooth muscle. SICR was also observed in individual myocytes during stretch of intact urinary bladder smooth muscle segments. Thus, longitudinal stretch of smooth muscle cells induces Ca2+ release through gating of RYR. SICR may be an important component of the physiological response to increases in luminal pressure in smooth muscle tissues.


2008 ◽  
Vol 32 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Willmann Liang

This teaching paper utilizes the materials presented by Dr. Fabiato in his review article entitled “Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum.” In the review, supporting evidence of calcium-induced calcium release (CICR) is presented. Data concerning potential objections to the CICR theory are discussed as well. In closing, technical issues associated with the skinned cell model are mentioned. Based on this review article, teaching and learning points are put forth in this article to highlight two concepts: 1) the regulatory mechanisms of CICR in cardiomyocytes and 2) the recognition of contradicting hypotheses and limitations in experimental design. The first concept is certainly an important one for physiology students. The second concept is universally applicable to researchers in all fields of science. It is thus the aim of this article to cultivate a rewarding teaching and learning experience for both instructors and students.


Sign in / Sign up

Export Citation Format

Share Document