The Plasma Membrane of Uterine Epithelial Cells: Structure and Histochemistry

1993 ◽  
Vol 27 (3) ◽  
pp. III-66 ◽  
Author(s):  
Christopher R. Murphy
2010 ◽  
Vol 22 (9) ◽  
pp. 110
Author(s):  
R. J. Madawala ◽  
C. R. Murphy

Rat uterine epithelial cells undergo many changes during early pregnancy in order to become receptive to blastocyst implantation. These changes include basolateral folding and the presence of vesicles of various sizes which are at their greatest number during the pre-implantation period. The present study investigated the possible role that caveolin 1 and 2 plays in this remodelling specifically days 1, 3, 6, 7, and 9 of pregnancy. Caveolin is a major protein in omega shaped invaginations of the plasma membrane called caveolae that are considered to be specialised plasma membrane subdomains. Caveolae are rich in cholesterol, glycosphingolipids, and GPI anchored proteins and are involved in endocytosis and membrane curvature. Immunofluorescence microscopy has shown caveolin 1 and 2 on day 1 of pregnancy are localised to the cytoplasm of luminal uterine epithelial cells, and by day 6 of pregnancy (the time of implantation), it concentrates basally. By day 9 of pregnancy, expression of both caveolin 1 and 2 in luminal uterine epithelia is cytoplasmic as seen on day 1 of pregnancy. A corresponding increase in protein expression of caveolin 1 on day 6 of pregnancy in luminal uterine epithelia was observed. Interestingly however, caveolin 2 protein expression decreases at the time of implantation as found by western blot analysis. Both caveolin 1 and 2 were localised to blood vessels within the endometrium and myometrium and also the muscle of the myometrium in all days of pregnancy studied. In addition, both caveolin 1 and 2 were absent from glandular epithelium, which is interesting considering that they do not undergo the plasma membrane transformation. The localisation and expression of caveolin 1 and 2 in rat luminal uterine epithelium at the time of implantation suggest possible roles in trafficking of cholesterol and/or various proteins for either degradation or relocation. Caveolins may contribute to the morphology of the basolateral membrane seen on day 6 of pregnancy. All of which may play an important role during successful blastocyst implantation.


1992 ◽  
Vol 4 (6) ◽  
pp. 633 ◽  
Author(s):  
CR Murphy

Changes in the molecular organization of the plasma membrane of uterine epithelial cells during early pregnancy and, in particular, at the attachment period are reviewed. The review focuses on attachment in rodents but other species are also considered. Alterations in protein content and type, as determined with electrophoretic and freeze-fracture techniques, and an increase in tight junction complexity occur in several species. Ultrastructural histochemistry shows that glycocalyx carbohydrates of different species both increase and decrease depending on the type of carbohydrate. Changes in membrane cholesterol content also occur and recent studies showing major reorganization of the actin-containing membrane skeleton are reviewed to show the dynamism of this plasma membrane during the period of uterine receptivity for attachment of the blastocyst.


2018 ◽  
Vol 301 (9) ◽  
pp. 1497-1505 ◽  
Author(s):  
Jessica S. Dudley ◽  
Christopher R. Murphy ◽  
Michael B. Thompson ◽  
Tanya Carter ◽  
Bronwyn M. McAllan

Sign in / Sign up

Export Citation Format

Share Document