basal plasma membrane
Recently Published Documents


TOTAL DOCUMENTS

55
(FIVE YEARS 6)

H-INDEX

16
(FIVE YEARS 2)

Placenta ◽  
2021 ◽  
Author(s):  
Stanimir A. Tashev ◽  
Daisy Parsons ◽  
Cameron Hillman ◽  
Shelley Harris ◽  
Emma M. Lofthouse ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Christine Deisl ◽  
Donald W. Hilgemann ◽  
Ruhma Syeda ◽  
Michael Fine

AbstractCells can expand their plasma membrane laterally by unfolding membrane undulations and by exocytosis. Here, we describe a third mechanism involving invaginations held shut by the membrane adapter, dynamin. Compartments open when Ca activates the lipid scramblase, TMEM16F, anionic phospholipids escape from the cytoplasmic monolayer in exchange for neutral lipids, and dynamins relax. Deletion of TMEM16F or dynamins blocks expansion, with loss of dynamin expression generating a maximally expanded basal plasma membrane state. Re-expression of dynamin2 or its GTPase-inactivated mutant, but not a lipid binding mutant, regenerates reserve compartments and rescues expansion. Dynamin2-GFP fusion proteins form punctae that rapidly dissipate from these compartments during TMEM16F activation. Newly exposed compartments extend deeply into the cytoplasm, lack numerous organellar markers, and remain closure-competent for many seconds. Without Ca, compartments open slowly when dynamins are sequestered by cytoplasmic dynamin antibodies or when scrambling is mimicked by neutralizing anionic phospholipids and supplementing neutral lipids. Activation of Ca-permeable mechanosensitive channels via cell swelling or channel agonists opens the compartments in parallel with phospholipid scrambling. Thus, dynamins and TMEM16F control large plasma membrane reserves that open in response to lateral membrane stress and Ca influx.


Nanomaterials ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 2040 ◽  
Author(s):  
Boris Chelobanov ◽  
Julia Poletaeva ◽  
Anna Epanchintseva ◽  
Anastasiya Tupitsyna ◽  
Inna Pyshnaya ◽  
...  

Use of multicellular spheroids in studies of nanoparticles (NPs) has increased in the last decade, however details of NPs interaction with spheroids are poorly known. We synthesized AuNPs (12.0 ± 0.1 nm in diameter, transmission electron microscopy (TEM data) and covered them with bovine serum albumin (BSA) and polyethyleneimine (PEI). Values of hydrodynamic diameter were 17.4 ± 0.4; 35.9 ± 0.5 and ±125.9 ± 2.8 nm for AuNPs, AuBSA-NPs and AuPEI-NPs, and Z-potential (net charge) values were −33.6 ± 2.0; −35.7 ± 1.8 and 39.9 ± 1.3 mV, respectively. Spheroids of human hepatocarcinoma (HepG2) and human embryo kidney (HEK293) cells (Corning ® spheroid microplates CLS4515-5EA), and monolayers of these cell lines were incubated with all NPs for 15 min–4 h, and fixed in 4% paraformaldehyde solution. Samples were examined using transmission and scanning electron microscopy. HepG2 and HEK2893 spheroids showed tissue-specific features and contacted with culture medium by basal plasma membrane of the cells. HepG2 cells both in monolayer and spheroids did not uptake of the AuNPs, while AuBSA-NPs and AuPEI-NPs readily penetrated these cells. All studied NPs penetrated HEK293 cells in both monolayer and spheroids. Thus, two different cell cultures maintained a type of the interaction with NPs in monolayer and spheroid forms, which not depended on NPs Z-potential and size.


2019 ◽  
Vol 30 (24) ◽  
pp. 2996-3012 ◽  
Author(s):  
Soyeon Kim ◽  
Joseph M. Kalappurakkal ◽  
Satyajit Mayor ◽  
Michael K. Rosen

The plasma membrane of eukaryotic cells is organized into lipid and protein microdomains, whose assembly mechanisms and functions are incompletely understood. We demonstrate that proteins in the nephrin/Nck/N-WASP actin-regulatory pathway cluster into micron-scale domains at the basal plasma membrane upon triggered phosphorylation of transmembrane protein nephrin. The domains are persistent but readily exchange components with their surroundings, and their formation is dependent on the number of Nck SH3 domains, suggesting they are phase separated polymers assembled through multivalent interactions among the three proteins. The domains form independent of the actin cytoskeleton, but acto-myosin contractility induces their rapid lateral movement. Nephrin phosphorylation induces larger clusters at the cell periphery, which are associated with extensive actin assembly and dense filopodia. Our studies illustrate how multivalent interactions between proteins at the plasma membrane can produce micron-scale organization of signaling molecules, and how the resulting clusters can both respond to and control the actin cytoskeleton.


2019 ◽  
Vol 104 (9) ◽  
pp. 4225-4238 ◽  
Author(s):  
Laura B James-Allan ◽  
Jaron Arbet ◽  
Stephanie B Teal ◽  
Theresa L Powell ◽  
Thomas Jansson

AbstractContextPlacental transport capacity influences fetal glucose supply. The syncytiotrophoblast is the transporting epithelium in the human placenta, expressing glucose transporters (GLUTs) and insulin receptors (IRs) in its maternal-facing microvillous plasma membrane (MVM) and fetal-facing basal plasma membrane (BM).ObjectiveThe objectives of this study were to (i) determine the expression of the insulin-sensitive GLUT4 glucose transporter and IR in the syncytiotrophoblast plasma membranes across gestation in normal pregnancy and in pregnancies complicated by maternal obesity, and (ii) assess the effect of insulin on GLUT4 plasma membrane trafficking in human placental explants.Design, Setting, and ParticipantsPlacental tissue was collected across gestation from women with normal body mass index (BMI) and mothers with obesity with appropriate for gestational age and macrosomic infants. MVM and BM were isolated.Main Outcome MeasuresProtein expression of GLUT4, GLUT1, and IR were determined by western blot.ResultsGLUT4 was exclusively expressed in the BM, and IR was predominantly expressed in the MVM, with increasing expression across gestation. BM GLUT1 expression was increased and BM GLUT4 expression was decreased in women with obesity delivering macrosomic babies. In placental villous explants, incubation with insulin stimulated Akt (S473) phosphorylation (+76%, P = 0.0003, n = 13) independent of maternal BMI and increased BM GLUT4 protein expression (+77%, P = 0.0013, n = 7) in placentas from lean women but not women with obesity.ConclusionWe propose that maternal insulin stimulates placental glucose transport by promoting GLUT4 trafficking to the BM, which may enhance glucose transfer to the fetus in response to postprandial hyperinsulinemia in women with normal BMI.


2019 ◽  
Author(s):  
Soyeon Kim ◽  
Joseph M. Kalappurakkal ◽  
Satyajit Mayor ◽  
Michael K. Rosen

AbstractThe plasma membrane of eukaryotic cells is organized into lipid and protein microdomains, whose assembly mechanisms and functions are incompletely understood. We demonstrate that proteins in the Nephrin/Nck/N-WASP actin-regulatory pathway cluster into micron-scale domains at the basal plasma membrane upon triggered phosphorylation of transmembrane Nephrin. The domains are persistent but readily exchange components with their surroundings, and their formation is dependent on the number of Nck SH3 domains, suggesting they are phase separated polymers assembled through multivalent interactions among the three proteins. The domains form independent of the actin cytoskeleton, but acto-myosin contractility induces their rapid lateral movement. Nephrin phosphorylation induces larger clusters at the cell periphery, which are associated with extensive actin assembly and dense filopodia. Our studies illustrate how multivalent interactions between proteins at the plasma membrane can produce micron-scale organization of signaling molecules, and how the resulting clusters can both respond to and control the actin cytoskeleton.


ZooKeys ◽  
2018 ◽  
Vol 801 ◽  
pp. 427-458 ◽  
Author(s):  
Urban Bogataj ◽  
Monika Praznik ◽  
Polona Mrak ◽  
Jasna Štrus ◽  
Magda Tušek-Žnidarič ◽  
...  

Isopod hindgut consists of two anatomical and functional parts, the anterior chamber, and the papillate region. This study provides a detailed ultrastructural comparison of epithelial cells in the anterior chamber and the papillate region with focus on cuticle ultrastructure, apical and basal plasma membrane labyrinths, and cell junctions. Na+/K+-ATPase activity in the hindgut epithelial cells was demonstrated by cytochemical localisation. The main difference in cuticle ultrastructure is in the thickness of epicuticle which is almost as thick as the procuticle in the papillate region and only about one sixth of the thickness of procuticle in the anterior chamber. The apical plasma membrane in both hindgut regions forms an apical plasma membrane labyrinth of cytoplasmic strands and extracellular spaces. In the papillate region the membranous infoldings are deeper and the extracellular spaces are wider. The basal plasma membrane is extensively infolded and associated with numerous mitochondria in the papillate region, while it forms relatively scarce basal infoldings in the anterior chamber. The junctional complex in both hindgut regions consists of adherens and septate junctions. Septate junctions are more extensive in the papillate region. Na+/K+-ATPase was located mostly in the apical plasma membranes in both hindgut regions. The ultrastructural features of hindgut cuticle are discussed in comparison to exoskeletal cuticle and to cuticles of other arthropod transporting epithelia from the perspective of their mechanical properties and permeability. The morphology of apical and basal plasma membranes and localisation of Na+/K+-ATPase are compared with other arthropod-transporting epithelia according to different functions of the anterior chamber and the papillate region.


2017 ◽  
Vol 2017 ◽  
pp. 1-4 ◽  
Author(s):  
Mark Weitzel ◽  
Jason E. Cohn ◽  
Harvey Spector

Myoepithelioma is a rare salivary gland neoplasm. They most commonly affect the major and minor salivary glands with the parotid gland being the most common, approximately 40%. Only 1% of all salivary gland neoplasms are myoepitheliomas. Myoepithelioma is usually a benign tumor arising from neoplastic myoepithelial or basket cells which are found between the basement membrane and the basal plasma membrane of acinar cells. They also contain multiple cellular elements. We present a case of a 73-year-old female with myoepithelioma of the parotid gland, an extremely rare neoplasm. There have been approximately 42 cases reported through 1985 and fewer than 100 cases through 1993. We will discuss the clinical presentation, pathophysiology, diagnosis, and treatment of such neoplasms.


Reproduction ◽  
2016 ◽  
Vol 152 (6) ◽  
pp. 753-763 ◽  
Author(s):  
Laura A Lindsay ◽  
Samson N Dowland ◽  
Christopher R Murphy

Controlled ovarian hyperstimulation is an essential component of IVF techniques to ensure proliferation and development of multiple ovarian follicles, but the effects of these hormones on the endometrium are largely unknown. During normal pregnancy in rats, there are significant changes in the basal plasma membrane of uterine epithelial cells (UECs) at the time of receptivity, including loss of focal adhesions. This enables the UECs to be removed from the implantation chamber surrounding the blastocyst, thus allowing invasion into the underlying stroma. This study investigated the influence of ovarian hyperstimulation (OH) on the basal plasma membrane of UECs during early pregnancy in the rat. Immunofluorescence results demonstrate the presence of paxillin, talin, integrin β1 and phosphorylated FAK (Y397FAK) in the basal portion of UECs at the time of implantation in OH pregnancy. TEM analysis demonstrated a flattened basal lamina and the presence of focal adhesions on the basal surface at this time in OH pregnancy. Significantly low full-length paxillin, high paxillin δ and integrin β1 were seen at the time of implantation in OH compared with those in normal pregnancy. The increase in paxillin δ suggests that these cells are less mobile, whereas the increase in integrin β1 and Y397FAK suggests the retention of a stable FA complex. Taken together with the increase in morphological focal adhesions, this represents a cell type that is stable and less easily removed for blastocyst implantation. This may be one mechanism explaining lower implantation rates after fresh embryo transfers compared with frozen cycles.


Placenta ◽  
2016 ◽  
Vol 45 ◽  
pp. 133
Author(s):  
Masatoshi Tomi ◽  
Saki Noguchi ◽  
Ayasa Fujibayashi ◽  
Tetsuo Maruyama ◽  
Emi Nakashima ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document