HORMONAL CONTROL OF ENZYME ACTIVITY DURING THE PLASMA MEMBRANE TRANSFORMATION OF UTERINE EPITHELIAL CELLS

2001 ◽  
Vol 25 (9) ◽  
pp. 859-871 ◽  
Author(s):  
M Bucci
2018 ◽  
Vol 301 (9) ◽  
pp. 1497-1505 ◽  
Author(s):  
Jessica S. Dudley ◽  
Christopher R. Murphy ◽  
Michael B. Thompson ◽  
Tanya Carter ◽  
Bronwyn M. McAllan

2001 ◽  
Vol 9 (3) ◽  
pp. 197-208 ◽  
Author(s):  
CR Murphy

The first site of contact between maternal and fetal tissue at the beginning of blastocyst attachment and implantation is the plasma membrane of uterine epithelial cells. Indeed, as has been noted often, regardless of the mode of placentation which ultimately occurs, contact between this plasma membrane and that of the trophoblast is a common beginning to implantation in most species studied so far, which now range from viviparous lizards to human beings. The similarities in these early events of uterine receptivity and placentation go further than mere contact between opposing surfaces however. A considerable body of evidence indicates that the behaviour of the plasma membrane of uterine epithelial cells during early pregnancy has many common aspects across species including humans. This review pays special attention to events in the human uterus and the epithelial cells in particular, but examines them within the wider context of uterine receptivity for implantation across species.


Author(s):  
Jessica S Dudley ◽  
Christopher R Murphy ◽  
Michael B Thompson ◽  
Bronwyn M McAllan

Abstract There are many different forms of nutrient provision in viviparous (live bearing) species. The formation of a placenta is one method where the placenta functions to transfer nutrients from mother to fetus (placentotrophy), transfer waste from the fetus to the mother and respiratory gas exchange. Despite having the same overarching function, there are different types of placentation within placentotrophic vertebrates, and many morphological changes occur in the uterus during pregnancy to facilitate formation of the placenta. These changes are regulated in complex ways but are controlled by similar hormonal mechanisms across species. This review describes current knowledge of the morphological and molecular changes to the uterine epithelium preceding implantation among mammals. Our aim is to identify the commonalities and constraints of these cellular changes to understand the evolution of placentation in mammals and propose directions for future research. We compare and discuss the complex modifications to the ultrastructure of uterine epithelial cells and show that there are similarities in the changes to the cytoskeleton and gross morphology of the uterine epithelial cells, especially of the apical and lateral plasma membrane of the cells during the formation of a placenta in all eutherians and marsupials studied to date. We conclude that further research is needed to understand the evolution of placentation among viviparous mammals, particularly concerning the level of placental invasiveness, hormonal control and genetic underpinnings of pregnancy in marsupial taxa.


2010 ◽  
Vol 22 (9) ◽  
pp. 110
Author(s):  
R. J. Madawala ◽  
C. R. Murphy

Rat uterine epithelial cells undergo many changes during early pregnancy in order to become receptive to blastocyst implantation. These changes include basolateral folding and the presence of vesicles of various sizes which are at their greatest number during the pre-implantation period. The present study investigated the possible role that caveolin 1 and 2 plays in this remodelling specifically days 1, 3, 6, 7, and 9 of pregnancy. Caveolin is a major protein in omega shaped invaginations of the plasma membrane called caveolae that are considered to be specialised plasma membrane subdomains. Caveolae are rich in cholesterol, glycosphingolipids, and GPI anchored proteins and are involved in endocytosis and membrane curvature. Immunofluorescence microscopy has shown caveolin 1 and 2 on day 1 of pregnancy are localised to the cytoplasm of luminal uterine epithelial cells, and by day 6 of pregnancy (the time of implantation), it concentrates basally. By day 9 of pregnancy, expression of both caveolin 1 and 2 in luminal uterine epithelia is cytoplasmic as seen on day 1 of pregnancy. A corresponding increase in protein expression of caveolin 1 on day 6 of pregnancy in luminal uterine epithelia was observed. Interestingly however, caveolin 2 protein expression decreases at the time of implantation as found by western blot analysis. Both caveolin 1 and 2 were localised to blood vessels within the endometrium and myometrium and also the muscle of the myometrium in all days of pregnancy studied. In addition, both caveolin 1 and 2 were absent from glandular epithelium, which is interesting considering that they do not undergo the plasma membrane transformation. The localisation and expression of caveolin 1 and 2 in rat luminal uterine epithelium at the time of implantation suggest possible roles in trafficking of cholesterol and/or various proteins for either degradation or relocation. Caveolins may contribute to the morphology of the basolateral membrane seen on day 6 of pregnancy. All of which may play an important role during successful blastocyst implantation.


Sign in / Sign up

Export Citation Format

Share Document