Thermoelastic plane waves without energy dissipation in a rotating body

1997 ◽  
Vol 24 (5) ◽  
pp. 551-560 ◽  
Author(s):  
D.S. Chandrasekharaiah ◽  
K.S. Srinath
2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Rajneesh Kumar ◽  
K. D. Sharma ◽  
S. K. Garg

The reflection of plane waves at the free surface of thermally conducting micropolar elastic medium with two temperatures is studied. The theory of thermoelasticity with and without energy dissipation is used to investigate the problem. The expressions for amplitudes ratios of reflected waves at different angles of incident wave are obtained. Dissipation of energy and two-temperature effects on these amplitude ratios with angle of incidence are depicted graphically. Some special and particular cases are also deduced.


2013 ◽  
Vol 18 (2) ◽  
pp. 503-519
Author(s):  
N. Sarkar ◽  
A. Lahiri

The present paper deals with the thermoelastic plane waves due to a thermo-mechanical shock in the form of pulse at the boundary of a homogeneous, isotropic thermoelastic half-space. The field equations of the Green- Naugdhi theory without energy dissipation for an thermoelastic solid in the generalized thermoelasticity theory are written in the form of a vector-matrix differential equation using Laplace transform techniques and then solved by an eigenvalue approach. Exact expressions for the considered field variables are obtained and presented graphically for copper-like material. The characteristic features of the present theory are analyzed by comparing these solutions with their counterparts in other generalized thcrmoelasticity theories.


2007 ◽  
Vol 48 (3) ◽  
pp. 433-447 ◽  
Author(s):  
Baljeet Singh

AbstractThe linear governing equations of a micropolar thermoelastic medium without energy dissipation are solved to show the existence of four plane waves in a two-dimensional model. The expressions for velocities of these plane waves are obtained. The boundary conditions at the free surface are used to obtain a system of four nonhomogeneous equations. These equations are solved numerically for a particular model to obtain reflection coefficients for the incidence of coupled longitudinal displacement and coupled transverse microrotational waves. These reflection coefficients as well as the energy ratios are computed and are shown graphically with the angle of incidence in the presence and absence of thermal effects.


Sign in / Sign up

Export Citation Format

Share Document