scholarly journals Sequences with a unique realization by simple graphs

1976 ◽  
Vol 21 (3) ◽  
pp. 235-244 ◽  
Author(s):  
Michael Koren
Author(s):  
M. A. Perumal ◽  
S. Navaneethakrishnan ◽  
A. Nagaraja ◽  
S. Arockiaraj

1982 ◽  
Vol 26 (6) ◽  
pp. 503-507
Author(s):  
Dudley G. Letbetter

Simplified design criteria are provided for two-handed, manual lifting by standing men and women, without selective assignment of personnel to specific material handling tasks. Based on a 1981 NIOSH report, application of these criteria requires no knowledge of human anatomy, anthropometry, biomechanics, psychophysics, muscle fatigue, cardiovascular capacity, or metabolic endurance. A person who can read and use simple graphs can quickly determine the maximum weight of a lifted object. The information needed is the horizontal grasp distance and the initial grasp height and lift distance of the object, plus the frequency and duration of lifting.


2006 ◽  
Vol 34 (8) ◽  
pp. 3043-3052 ◽  
Author(s):  
Tongsuo Wu ◽  
Dancheng Lu
Keyword(s):  

2021 ◽  
Vol 10 (1) ◽  
pp. 131-152
Author(s):  
Stephen Drury

Abstract We discuss the question of classifying the connected simple graphs H for which the second largest eigenvalue of the signless Laplacian Q(H) is ≤ 4. We discover that the question is inextricable linked to a knapsack problem with infinitely many allowed weights. We take the first few steps towards the general solution. We prove that this class of graphs is minor closed.


2018 ◽  
Vol 60 (1-2) ◽  
pp. 369-385
Author(s):  
M. Fathalian ◽  
R. A. Borzooei ◽  
M. Hamidi
Keyword(s):  

10.37236/422 ◽  
2010 ◽  
Vol 17 (1) ◽  
Author(s):  
Yichao Chen

CF-graphs form a class of multigraphs that contains all simple graphs. We prove a lower bound for the average genus of a CF-graph which is a linear function of its Betti number. A lower bound for average genus in terms of the maximum genus and some structure theorems for graphs with a given average genus are also provided.


10.37236/408 ◽  
2010 ◽  
Vol 17 (1) ◽  
Author(s):  
David Eppstein

We define the limiting density of a minor-closed family of simple graphs $\mathcal{F}$ to be the smallest number $k$ such that every $n$-vertex graph in $\mathcal{F}$ has at most $kn(1+o(1))$ edges, and we investigate the set of numbers that can be limiting densities. This set of numbers is countable, well-ordered, and closed; its order type is at least $\omega^\omega$. It is the closure of the set of densities of density-minimal graphs, graphs for which no minor has a greater ratio of edges to vertices. By analyzing density-minimal graphs of low densities, we find all limiting densities up to the first two cluster points of the set of limiting densities, $1$ and $3/2$. For multigraphs, the only possible limiting densities are the integers and the superparticular ratios $i/(i+1)$.


2018 ◽  
Vol 2 (2) ◽  
pp. 72
Author(s):  
H Hendy ◽  
Kiki A. Sugeng ◽  
A.N.M Salman ◽  
Nisa Ayunda

<p>Let <span class="math"><em>H</em></span> and <span class="math"><em>G</em></span> be two simple graphs. The concept of an <span class="math"><em>H</em></span>-magic decomposition of <span class="math"><em>G</em></span> arises from the combination between graph decomposition and graph labeling. A decomposition of a graph <span class="math"><em>G</em></span> into isomorphic copies of a graph <span class="math"><em>H</em></span> is <span class="math"><em>H</em></span>-magic if there is a bijection <span class="math"><em>f</em> : <em>V</em>(<em>G</em>) ∪ <em>E</em>(<em>G</em>) → {1, 2, ..., ∣<em>V</em>(<em>G</em>) ∪ <em>E</em>(<em>G</em>)∣}</span> such that the sum of labels of edges and vertices of each copy of <span class="math"><em>H</em></span> in the decomposition is constant. A lexicographic product of two graphs <span class="math"><em>G</em><sub>1</sub></span> and <span class="math"><em>G</em><sub>2</sub>, </span> denoted by <span class="math"><em>G</em><sub>1</sub>[<em>G</em><sub>2</sub>], </span> is a graph which arises from <span class="math"><em>G</em><sub>1</sub></span> by replacing each vertex of <span class="math"><em>G</em><sub>1</sub></span> by a copy of the <span class="math"><em>G</em><sub>2</sub></span> and each edge of <span class="math"><em>G</em><sub>1</sub></span> by all edges of the complete bipartite graph <span class="math"><em>K</em><sub><em>n</em>, <em>n</em></sub></span> where <span class="math"><em>n</em></span> is the order of <span class="math"><em>G</em><sub>2</sub>.</span> In this paper we provide a sufficient condition for <span class="math">$\overline{C_{n}}[\overline{K_{m}}]$</span> in order to have a <span class="math">$P_{t}[\overline{K_{m}}]$</span>-magic decompositions, where <span class="math"><em>n</em> &gt; 3, <em>m</em> &gt; 1, </span> and <span class="math"><em>t</em> = 3, 4, <em>n</em> − 2</span>.</p>


Author(s):  
Daniele Guido ◽  
Tommaso Isola ◽  
Michel L. Lapidus
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document