00/02640 Tape casting—a versatile method of making fuel cell components and their characterization

2000 ◽  
Vol 41 (5) ◽  
pp. 294
2007 ◽  
Vol 336-338 ◽  
pp. 498-501
Author(s):  
Xian Feng Jiang ◽  
Min Fang Han ◽  
Su Ping Peng

The all processes for manufacturing materials parts of solid oxide fuel cell (SOFC) are discussed in the paper. The films are made in one step by the ways of APS, VPS, EVD, which are usually used to produce the electrolyte and interconnect. The films are thin and good gas-resistance, but with relatively high cost. All parts of SOFC are made by the following ways, such as sol-gel, tape casting, tape calendaring and screen printing, which are suitable for manufacturing samples in industry with the cheapest process by co-sintered together ways.


2006 ◽  
Vol 4 (2) ◽  
pp. 138-142 ◽  
Author(s):  
Fran G. E. Jones ◽  
Paul A. Connor ◽  
Alan J. Feighery ◽  
Julie Nairn ◽  
Jim Rennie ◽  
...  

St. Andrews Fuel Cells Ltd. is a spin-off company (formed in February 2005) from the University of St. Andrews. The company’s focus is on the development of the SOFCRoll fuel cell. The SOFCRoll design is produced from tape casting and is fired in a single unit, offering reduced fuel cell production costs. Additionally, the self-supporting nature of the SOFCRoll geometry removes the need for thick cell components, further reducing cell cost and offering increased power densities. This paper reviews the development of the SOFCRoll concerning the processing and performance testing.


2015 ◽  
Vol 30 (12) ◽  
pp. 1291
Author(s):  
ZHANG Yu-Yue ◽  
LIN Jie ◽  
MIAO Guo-Shuan ◽  
GAO Jian-Feng ◽  
CHEN Chu-Sheng ◽  
...  

2014 ◽  
Vol 21 (6) ◽  
pp. 1319-1326 ◽  
Author(s):  
S. H. Eberhardt ◽  
F. Marone ◽  
M. Stampanoni ◽  
F. N. Büchi ◽  
T. J. Schmidt

Synchrotron-based X-ray tomographic microscopy is investigated for imaging the local distribution and concentration of phosphoric acid in high-temperature polymer electrolyte fuel cells. Phosphoric acid fills the pores of the macro- and microporous fuel cell components. Its concentration in the fuel cell varies over a wide range (40–100 wt% H3PO4). This renders the quantification and concentration determination challenging. The problem is solved by using propagation-based phase contrast imaging and a referencing method. Fuel cell components with known acid concentrations were used to correlate greyscale values and acid concentrations. Thus calibration curves were established for the gas diffusion layer, catalyst layer and membrane in a non-operating fuel cell. The non-destructive imaging methodology was verified by comparing image-based values for acid content and concentration in the gas diffusion layer with those from chemical analysis.


1992 ◽  
Vol 100 (1162) ◽  
pp. 847-850 ◽  
Author(s):  
Tatsuya KAWADA ◽  
Natsuko SAKAI ◽  
Harumi YOKOKAWA ◽  
Masayuki DOKIYA ◽  
Iwao ANZAI

Author(s):  
Paul Bobka ◽  
Felix Gabriel ◽  
Martin Römer ◽  
Thomas Engbers ◽  
Markus Willgeroth ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document