Manufacturing Processes of Solid Oxide Fuel Cell Components

2007 ◽  
Vol 336-338 ◽  
pp. 498-501
Author(s):  
Xian Feng Jiang ◽  
Min Fang Han ◽  
Su Ping Peng

The all processes for manufacturing materials parts of solid oxide fuel cell (SOFC) are discussed in the paper. The films are made in one step by the ways of APS, VPS, EVD, which are usually used to produce the electrolyte and interconnect. The films are thin and good gas-resistance, but with relatively high cost. All parts of SOFC are made by the following ways, such as sol-gel, tape casting, tape calendaring and screen printing, which are suitable for manufacturing samples in industry with the cheapest process by co-sintered together ways.

2009 ◽  
Vol 35 (2) ◽  
pp. 803-811 ◽  
Author(s):  
Ralf Hansch ◽  
Mohammad Rahul Reza Chowdhury ◽  
Norbert H. Menzler

2015 ◽  
Vol 30 (12) ◽  
pp. 1291
Author(s):  
ZHANG Yu-Yue ◽  
LIN Jie ◽  
MIAO Guo-Shuan ◽  
GAO Jian-Feng ◽  
CHEN Chu-Sheng ◽  
...  

1992 ◽  
Vol 100 (1162) ◽  
pp. 847-850 ◽  
Author(s):  
Tatsuya KAWADA ◽  
Natsuko SAKAI ◽  
Harumi YOKOKAWA ◽  
Masayuki DOKIYA ◽  
Iwao ANZAI

2020 ◽  
Vol 307 ◽  
pp. 149-153
Author(s):  
Nurul Waheeda Mazlan ◽  
Nafisah Osman ◽  
Oskar Hasdinor Hassan ◽  
Zakiah Mohamed

Abstract. Solid oxide fuel cell (SOFC) is an electrochemical conversion device that undergoes a thermal cycling at various operating temperature where lead to the degradation of its mechanical properties. Electrolyte among the main component in SOFC plays a crucial part in defined the overall performance which facing a lattice expansion event when exposed to heating. Thus, in this paper BaCe0.54Zr0.36Y0.1O3-δ (BCZY) was selected as potential electrolyte for intermediate temperature solid oxide fuel cell (IT-SOFC) to investigate its lattice expansion as a function of temperature. The sample was prepared via a sol gel method and calcined at 1100°C for 10 hours to form a powder and then pressed to become a pellet. To ensure a good densification in such pellet, two-steps sintering processes was indicated at 1500°C and ground to a powder form prior to the lattice expansion measurements. High temperature X-ray diffraction (HT-XRD) was used to study the lattice expansion of sample in the temperature range of 25°C to 700°C with interval 100°C under air atmosphere. HT-XRD analysis was done using X’pert Highscore Plus software and Visual for Electronic and Structural Analysis (VESTA) software was used to observe the crystal structure. Phase and structural analysis of BCZY electrolyte materials were discussed. Apparently, the BCZY shows an average of 97% phase purity from room temperature to 700°C. Rietveld refinement analysis revealed that the BaCe0.54Zr0.36Y0.1O3-δ exhibits cubic symmetrical structure with unit cell, a=b=c that varied from 4.3440Å - 4.3731Å for all the temperature studied. Thus, the expansion percentage for the lattice expansion from room temperature to 700°C was about 12.6 %.


2019 ◽  
Vol 91 (1) ◽  
pp. 373-379
Author(s):  
Amjad Hussain ◽  
Muhammad Zubair Khan ◽  
Rak Hyun Song ◽  
Jong-Eun Hong ◽  
Seung-Bok Lee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document