03/01831 Electrical energy saving in a passive-solar-heated residence using a direct gain attached sunspace

2003 ◽  
Vol 44 (5) ◽  
pp. 312
Author(s):  
Lingjiang Huang ◽  
Jian Kang

AbstractThe solar incidence on an indoor environment and its occupants has significant impacts on indoor thermal comfort. It can bring favorable passive solar heating and can result in undesired overheating (even in winter). This problem becomes more critical for high altitudes with high intensity of solar irradiance, while received limited attention. In this study, we explored the specific overheating and rising thermal discomfort in winter in Lhasa as a typical location of a cold climate at high altitudes. First, we evaluated the thermal comfort incorporating solar radiation effect in winter by field measurements. Subsequently, we investigated local occupant adaptive responses (considering the impact of direct solar irradiance). This was followed by a simulation study of assessment of annual based thermal comfort and the effect on energy-saving potential by current solar adjustment. Finally, we discussed winter shading design for high altitudes for both solar shading and passive solar use at high altitudes, and evaluated thermal mass shading with solar louvers in terms of indoor environment control. The results reveal that considerable indoor overheating occurs during the whole winter season instead of summer in Lhasa, with over two-thirds of daytime beyond the comfort range. Further, various adaptive behaviors are adopted by occupants in response to overheating due to the solar radiation. Moreover, it is found that the energy-saving potential might be overestimated by 1.9 times with current window to wall ratio requirements in local design standards and building codes due to the thermal adaption by drawing curtains. The developed thermal mass shading is efficient in achieving an improved indoor thermal environment by reducing overheating time to an average of 62.2% during the winter and a corresponding increase of comfort time.


2019 ◽  
Vol 36 (1) ◽  
pp. 203-224 ◽  
Author(s):  
Mario A. Paredes‐Valverde ◽  
Giner Alor‐Hernández ◽  
Jorge L. García‐Alcaráz ◽  
María del Pilar Salas‐Zárate ◽  
Luis O. Colombo‐Mendoza ◽  
...  

2014 ◽  
Vol 986-987 ◽  
pp. 1383-1386
Author(s):  
Zhen Xing Yang ◽  
He Guo ◽  
Yu Long Yu ◽  
Yu Xin Wang

Cloud computing is a new emerging paradigm which delivers an infrastructure, platform and software as services in a pay-as-you-go model. However, with the development of cloud computing, the large-scale data centers consume huge amounts of electrical energy resulting in high operational costs and environment problem. Nevertheless, existing energy-saving algorithms based on live migration don’t consider the migration energy consumption, and most of which are designed for homogeneous cloud environment. In this paper, we take the first step to model energy consumption in heterogeneous cloud environment with migration energy consumption. Based on this energy model, we design energy-saving Best fit decreasing (ESBFD) algorithm and energy-saving first fit decreasing (ESFFD) algorithm. We further provide results of several experiments using traces from PlanetLab in CloudSim. The experiments show that the proposed algorithms can effectively reduce the energy consumption of data center in the heterogeneous cloud environment compared to existing algorithms like NEA, DVFS, ST (Single Threshold) and DT (Double Threshold).


Energy saving can be maximized by rectifying the intermediate conversion processes involved during the utilization of solar energy. The system eliminates the transformation of electrical form of solar energy into another form by directly utilizing its electrical energy in the management and control of power supplies obtained from renewable (solar) and conventional (mains) energy sources. A current control scheme is presented in which current delivered by solar supply is used to control the current in mains supply in such a way that both currents are inversely proportional to each other. Any increment in solar current opposes mains current in the same proportion and vice versa. A balanced common physical output is resulted from the electrical load supplied by each source separately. A natural variation in solar radiation is utilized to fluctuate the solar current which is further used to change the mains current. Energy saving is maximized in this supply management by the optimal utilization of solar energy.


2015 ◽  
Vol 4 (2) ◽  
pp. 4
Author(s):  
Shixiong Liu

This paper mainly for the construction of electrical energy-saving lighting design analysis, discussed the importance of building electrical lighting energy-saving design, and specifically describes how electrical energy-saving design, in order to provide reference for the construction of electrical energy-saving design.<p> </p>


Author(s):  
S Sendari ◽  
H Elmunsyah ◽  
Muladi ◽  
A N Afandi

Sign in / Sign up

Export Citation Format

Share Document