97/04706 Characteristics of coke carbon modified with mesophase-pitch as a negative electrode for lithium ion batteries

1997 ◽  
Vol 38 (6) ◽  
pp. 407
1999 ◽  
Vol 81-82 ◽  
pp. 182-186 ◽  
Author(s):  
Yuichi Sato ◽  
Yasuo Kikuchi ◽  
Takeshi Nakano ◽  
Gaku Okuno ◽  
Koichi Kobayakawa ◽  
...  

TANSO ◽  
2013 ◽  
Vol 2013 (257) ◽  
pp. 135-140
Author(s):  
Takahiro Kitano ◽  
Akira Iwata ◽  
Fujio Okino

Author(s):  
Xinyue Li ◽  
Marco Fortunato ◽  
Anna Maria Cardinale ◽  
Angelina Sarapulova ◽  
Christian Njel ◽  
...  

AbstractNickel aluminum layered double hydroxide (NiAl LDH) with nitrate in its interlayer is investigated as a negative electrode material for lithium-ion batteries (LIBs). The effect of the potential range (i.e., 0.01–3.0 V and 0.4–3.0 V vs. Li+/Li) and of the binder on the performance of the material is investigated in 1 M LiPF6 in EC/DMC vs. Li. The NiAl LDH electrode based on sodium alginate (SA) binder shows a high initial discharge specific capacity of 2586 mAh g−1 at 0.05 A g−1 and good stability in the potential range of 0.01–3.0 V vs. Li+/Li, which is better than what obtained with a polyvinylidene difluoride (PVDF)-based electrode. The NiAl LDH electrode with SA binder shows, after 400 cycles at 0.5 A g−1, a cycling retention of 42.2% with a capacity of 697 mAh g−1 and at a high current density of 1.0 A g−1 shows a retention of 27.6% with a capacity of 388 mAh g−1 over 1400 cycles. In the same conditions, the PVDF-based electrode retains only 15.6% with a capacity of 182 mAh g−1 and 8.5% with a capacity of 121 mAh g−1, respectively. Ex situ X-ray photoelectron spectroscopy (XPS) and ex situ X-ray absorption spectroscopy (XAS) reveal a conversion reaction mechanism during Li+ insertion into the NiAl LDH material. X-ray diffraction (XRD) and XPS have been combined with the electrochemical study to understand the effect of different cutoff potentials on the Li-ion storage mechanism. Graphical abstract The as-prepared NiAl-NO3−-LDH with the rhombohedral R-3 m space group is investigated as a negative electrode material for lithium-ion batteries (LIBs). The effect of the potential range (i.e., 0.01–3.0 V and 0.4–3.0 V vs. Li+/Li) and of the binder on the material’s performance is investigated in 1 M LiPF6 in EC/DMC vs. Li. Ex situ X-ray photoelectron spectroscopy (XPS) and ex situ X-ray absorption spectroscopy (XAS) reveal a conversion reaction mechanism during Li+ insertion into the NiAl LDH material. X-ray diffraction (XRD) and XPS have been combined with the electrochemical study to understand the effect of different cutoff potentials on the Li-ion storage mechanism. This work highlights the possibility of the direct application of NiAl LDH materials as negative electrodes for LIBs.


2017 ◽  
Vol 28 (3) ◽  
pp. 1595-1604 ◽  
Author(s):  
Manab Kundu ◽  
Gopalu Karunakaran ◽  
Evgeny Kolesnikov ◽  
Mikhail V. Gorshenkov ◽  
Denis Kuznetsov

2016 ◽  
Vol 4 (19) ◽  
pp. 7091-7106 ◽  
Author(s):  
Jian Xie ◽  
Qichun Zhang

Different organic electrode materials in lithium-ion batteries are divided into three types: positive electrode materials, negative electrode materials, and bi-functional electrode materials, and are further discussed.


2016 ◽  
Vol 724 ◽  
pp. 87-91 ◽  
Author(s):  
Chang Su Kim ◽  
Yong Hoon Cho ◽  
Kyoung Soo Park ◽  
Soon Ki Jeong ◽  
Yang Soo Kim

We investigated the electrochemical properties of carbon-coated niobium dioxide (NbO2) as a negative electrode material for lithium-ion batteries. Carbon-coated NbO2 powders were synthesized by ball-milling using carbon nanotubes as the carbon source. The carbon-coated NbO2 samples were of smaller particle size compared to the pristine NbO2 samples. The carbon layers were coated non-uniformly on the NbO2 surface. The X-ray diffraction patterns confirmed that the inter-layer distances increased after carbon coating by ball-milling. This lead to decreased charge-transfer resistance, confirmed by electrochemical impedance spectroscopy, allowing electrons and lithium-ions to quickly transfer between the active material and electrolyte. Electrochemical performance, including capacity and initial coulombic efficiency, was therefore improved by carbon coating by ball-milling.


2006 ◽  
Vol 161 (2) ◽  
pp. 1275-1280 ◽  
Author(s):  
Liwei Zhao ◽  
Izumi Watanabe ◽  
Takayuki Doi ◽  
Shigeto Okada ◽  
Jun-ichi Yamaki

2011 ◽  
Vol 197-198 ◽  
pp. 1113-1116 ◽  
Author(s):  
Wen Li Yao ◽  
Jin Qing Chen ◽  
An Yun Li ◽  
Xin Bing Chen

The platelike Co3O4/carbon nanofiber (CNF) composite materials were synthesized by the calcination of β-Co(OH)2/CNF precursor prepared by a surfactant-free hydrothermal method. As negative electrode materials for lithium-ion batteries, the platelike Co3O4/CNF composites can deliver a high reversible capacity of 900 mAh g-1 for a life extending over hundreds of cycles at a current density of 100 mA g-1. The high Li-storage capacity and excellent cycling performance for Co3O4/CNF composite materials may mainly attribute to the beneficial effect of the CNFs addition on enhancing structural stability and electrical conductivity of Co3O4 platelets.


Sign in / Sign up

Export Citation Format

Share Document