THE GLUCOSE FATTY-ACID CYCLE ITS ROLE IN INSULIN SENSITIVITY AND THE METABOLIC DISTURBANCES OF DIABETES MELLITUS

The Lancet ◽  
1963 ◽  
Vol 281 (7285) ◽  
pp. 785-789 ◽  
Author(s):  
P.J. Randle ◽  
P.B. Garland ◽  
C.N. Hales ◽  
E.A. Newsholme
1965 ◽  
Vol 131 (1 Adipose Tissu) ◽  
pp. 324-333 ◽  
Author(s):  
P. J. Randle ◽  
P. B. Garland ◽  
E. A. Newsholmet ◽  
C. N. Hales

Author(s):  
Dominic Cavlan ◽  
Shanti Vijayaraghavan ◽  
Susan Gelding ◽  
William Drake

Summary A state of insulin resistance is common to the clinical conditions of both chronic growth hormone (GH) deficiency and GH excess (acromegaly). GH has a physiological role in glucose metabolism in the acute settings of fast and exercise and is the only anabolic hormone secreted in the fasting state. We report the case of a patient in whom knowledge of this aspect of GH physiology was vital to her care. A woman with well-controlled type 1 diabetes mellitus who developed hypopituitarism following the birth of her first child required GH replacement therapy. Hours after the first dose, she developed a rapid metabolic deterioration and awoke with hyperglycaemia and ketonuria. She adjusted her insulin dose accordingly, but the pattern was repeated with each subsequent increase in her dose. Acute GH-induced lipolysis results in an abundance of free fatty acids (FFA); these directly inhibit glucose uptake into muscle, and this can lead to hyperglycaemia. This glucose–fatty acid cycle was first described by Randle et al. in 1963; it is a nutrient-mediated fine control that allows oxidative muscle to switch between glucose and fatty acids as fuel, depending on their availability. We describe the mechanism in detail. Learning points There is a complex interplay between GH and insulin resistance: chronically, both GH excess and deficiency lead to insulin resistance, but there is also an acute mechanism that is less well appreciated by clinicians. GH activates hormone-sensitive lipase to release FFA into the circulation; these may inhibit the uptake of glucose leading to hyperglycaemia and ketosis in the type 1 diabetic patient. The Randle cycle, or glucose–fatty acid cycle, outlines the mechanism for this acute relationship. Monitoring the adequacy of GH replacement in patients with type 1 diabetes is difficult, with IGF1 an unreliable marker.


1981 ◽  
Vol 53 (2) ◽  
pp. 123-129 ◽  
Author(s):  
J.C. STANLEY

1995 ◽  
Vol 268 (5) ◽  
pp. E1007-E1017 ◽  
Author(s):  
C. T. Putman ◽  
L. L. Spriet ◽  
E. Hultman ◽  
D. J. Dyck ◽  
G. J. Heigenhauser

Pyruvate dehydrogenase activity (PDHa), acetyl group, and citrate accumulation were examined in human skeletal muscle at rest and during cycling exercise while acetate was infused. Eight subjects received 400 mmol of sodium acetate (Ace) at a constant rate during 20 min of rest, 5 min of cycling at 40% maximal O2 uptake (VO2max) and 15 min of cycling at 80% VO2max. Two weeks later experiments were repeated while 400 mmol of sodium bicarbonate was infused in the control condition (CON). Ace infusion increased muscle acetyl-coenzyme A (acetyl-CoA), citrate, and acetylcarnitine. A decline in resting PDHa during 20 min of Ace infusion (0.37 +/- 0.08 vs. 0.16 +/- 0.03 mmol.min-1.kg wet wt-1) coincided with an elevation in the acetyl-CoA-to-free CoA ratio (acetyl-CoA/CoASH; 0.28 +/- 0.04 to 0.73 +/- 0.14). After 20 min of CON infusion, resting PDHa (0.32 +/- 0.06 mmol.min-1.kg wet wt-1) was similar to PDHa before Ace infusion. During exercise, acetyl-CoA, citrate, and acetyl-CoA/CoASH were further elevated, and the differences that existed at rest were resolved. PDHa increased to the same extent in Ace and CON, in which it was 44-47% transformed after 5 min at 40% VO2max and completely transformed after 15 min at 80% VO2max. At rest PDHa was regulated by variations in acetyl-CoA/CoASH secondary to enhanced acetate metabolism. Conversely, during exercise PDHa regulation appeared independent of variations in acetyl-CoA/CoASH. The resting data are consistent with a central role for PDHa and citrate in the regulation of the glucose-fatty acid cycle in skeletal muscle, as classically proposed. However, in the present study Ace infusion was not effective in perturbing the glucose-fatty acid cycle during exercise.


Sign in / Sign up

Export Citation Format

Share Document