ADVANTAGE OF LIVE ATTENUATED COLD-ADAPTED INFLUENZA A VIRUS OVER INACTIVATED VACCINE FOR A/WASHINGTON/80 (H3N2) WILD-TYPE VIRUS INFECTION

The Lancet ◽  
1984 ◽  
Vol 323 (8379) ◽  
pp. 705-708 ◽  
Author(s):  
MaryLou Clements ◽  
RobertF Betts ◽  
BrianR Murphy
2005 ◽  
Vol 79 (6) ◽  
pp. 3595-3605 ◽  
Author(s):  
Matthew F. McCown ◽  
Andrew Pekosz

ABSTRACT The M2 integral membrane protein encoded by influenza A virus possesses an ion channel activity that is required for efficient virus entry into host cells. The role of the M2 protein cytoplasmic tail in virus replication was examined by generating influenza A viruses encoding M2 proteins with truncated C termini. Deletion of 28 amino acids (M2Stop70) resulted in a virus that produced fourfold-fewer particles but >1,000-fold-fewer infectious particles than wild-type virus. Expression of the full-length M2 protein in trans restored the replication of the M2 truncated virus. Although the M2Stop70 virus particles were similar to wild-type virus in morphology, the M2Stop70 virions contained reduced amounts of viral nucleoprotein and genomic RNA, indicating a defect in vRNP packaging. The data presented indicate the M2 cytoplasmic tail plays a role in infectious virus production by coordinating the efficient packaging of genome segments into influenza virus particles.


1980 ◽  
Vol 29 (2) ◽  
pp. 348-355 ◽  
Author(s):  
Brian R. Murphy ◽  
Margret B. Rennels ◽  
R. Gordon Douglas ◽  
Robert F. Betts ◽  
Robert B. Couch ◽  
...  

Two attenuated influenza A donor viruses, the A/Udorn/72 ts -1A2 and the A/Ann Arbor/6/60 cold-adapted ( ca ) viruses, are being evaluated for their ability to reproducibly attenuate each new variant of influenza A virus to a specific and desired level by the transfer of one or more attenuating genes. Each of these donor viruses has been able to attenuate influenza A viruses belonging to the H3N2 subtype by the transfer of one or more attenuating genes. To determine whether these two donor viruses could attenuate a wild-type virus that belonged to a different influenza A subtype, ts -1A2 and ca recombinants of a wild-type virus representative of the A/USSR/77 (H1N1) Russian influenza strain were prepared and evaluated in adult doubly seronegative volunteers at several doses. The recombinants derived from both donor viruses were attenuated for the doubly seronegative adults. Less than 5% of infected vaccinees developed a febrile or systemic reaction, whereas five of six recipients of wild-type virus developed such a response. The 50% human infectious dose (HID 50 ) for each recombinant was approximately 10 5.0 50% tissue culture infective doses. The virus shed by the ts -1A2 and ca vaccinees retained the ts or ca phenotype, or both. This occurred despite replication of the recombinant viruses for up to 9 days. No evidence for transmission of the ca or ts -1A2 recombinant virus to controls was observed. A serum hemagglutination inhibition response was detected in less than 50% of the infected vaccinees. However, with the more sensitive enzyme-linked immunosorbent assay, a serological response was detected in 100% of the ca vaccinees given 300 HID 50 and approximately 70% of ca or ts vaccinees who received 10 to 32 HID 50 of virus. These results indicate that the recombinants derived from both donor viruses were satisfactorily attenuated and were stable genetically after replication in doubly seronegative adults although they induced a lower serum hemagglutination inhibition response than that found previously for H3N2 ts and ca recombinants.


2000 ◽  
Vol 74 (24) ◽  
pp. 11566-11573 ◽  
Author(s):  
Xiuyan Wang ◽  
Ming Li ◽  
Hongyong Zheng ◽  
Thomas Muster ◽  
Peter Palese ◽  
...  

ABSTRACT The alpha/beta interferon (IFN-α/β) system represents one of the first lines of defense against virus infections. As a result, most viruses encode IFN antagonistic factors which enhance viral replication in their hosts. We have previously shown that a recombinant influenza A virus lacking the NS1 gene (delNS1) only replicates efficiently in IFN-α/β-deficient systems. Consistent with this observation, we found that infection of tissue culture cells with delNS1 virus, but not with wild-type influenza A virus, induced high levels of mRNA synthesis from IFN-α/β genes, including IFN-β. It is known that transactivation of the IFN-β promoter depends on NF-κB and several other transcription factors. Interestingly, cells infected with delNS1 virus showed high levels of NF-κB activation compared with those infected with wild-type virus. Expression of dominant-negative inhibitors of the NF-κB pathway during delNS1 virus infection prevented the transactivation of the IFN-β promoter, demonstrating a functional link between NF-κB activation and IFN-α/β synthesis in delNS1 virus-infected cells. Moreover, expression of the NS1 protein prevented virus- and/or double-stranded RNA (dsRNA)-mediated activation of the NF-κB pathway and of IFN-β synthesis. This inhibitory property of the NS1 protein of influenza A virus was dependent on its ability to bind dsRNA, supporting a model in which binding of NS1 to dsRNA generated during influenza virus infection prevents the activation of the IFN system. NS1-mediated inhibition of the NF-κB pathway may thus play a key role in the pathogenesis of influenza A virus.


2005 ◽  
Vol 79 (12) ◽  
pp. 7926-7932 ◽  
Author(s):  
Svetlana V. Bourmakina ◽  
Adolfo García-Sastre

ABSTRACT We generated a recombinant influenza A virus (Mmut) that produced low levels of matrix (M1) and M2 proteins in infected cells. Mmut virus propagated to significantly lower titers than did wild-type virus in cells infected at low multiplicity. By contrast, virion morphology and incorporation of viral proteins and vRNAs into virus particles were similar to those of wild-type virus. We propose that a threshold amount of M1 protein is needed for the assembly of viral components into an infectious particle and that budding is delayed in Mmut virus-infected cells until sufficient levels of M1 protein accumulate at the plasma membrane.


2009 ◽  
Vol 53 (5) ◽  
pp. 2120-2128 ◽  
Author(s):  
Donald F. Smee ◽  
Brett L. Hurst ◽  
Min-Hui Wong ◽  
Kevin W. Bailey ◽  
John D. Morrey

ABSTRACT An amantadine-resistant influenza A/Duck/MN/1525/81 (H5N1) virus was developed from the low-pathogenic North American wild-type (amantadine-sensitive) virus for studying treatment of infections in cell culture and in mice. Double combinations of amantadine, oseltamivir (or the cell culture-active form, oseltamivir carboxylate), and ribavirin were used. Amantadine-oseltamivir carboxylate and amantadine-ribavirin combinations showed synergistic interactions over a range of doses against wild-type virus in Madin-Darby canine kidney (MDCK) cell culture, but oseltamivir carboxylate-ribavirin combinations did not. Primarily additive interactions were seen with oseltamivir carboxylate-ribavirin combinations against amantadine-resistant virus. The presence of amantadine in drug combinations against the resistant virus did not improve activity. The wild-type and amantadine-resistant viruses were lethal to mice by intranasal instillation. The resistant virus infection could not be treated with amantadine up to 100 mg/kg body weight/day, whereas the wild-type virus infection was treatable with oral doses of 10 (weakly effective) to 100 mg/kg/day administered twice a day for 5 days starting 4 h prior to virus exposure. Drug combination studies showed that treatment of the amantadine-resistant virus infection with amantadine-oseltamivir or amantadine-ribavirin combinations was not significantly better than using oseltamivir or ribavirin alone. In contrast, the oseltamivir-ribavirin (25- and 75-mg/kg/day combination) treatments produced significant reductions in mortality. The wild-type virus infection was markedly reduced in severity by all three combinations (amantadine, 10 mg/kg/day combined with the other compounds at 20 or 40 mg/kg/day) compared to monotherapy with the three compounds. Results indicate a lack of benefit of amantadine in combinations against amantadine-resistant virus, but positive benefits in combinations against amantadine-sensitive virus.


2017 ◽  
pp. JVI.01972-17 ◽  
Author(s):  
Wen-Chi Su ◽  
Wen-Ya Yu ◽  
Shih-Han Huang ◽  
Michael M.C. Lai

Virus replication is mediated by interactions between virus and host. Here, we demonstrate that influenza A virus membrane protein 2 (M2) can be ubiquitinated. The lysine residue at position 78, which is located in the cytoplasmic domain of M2, is essential for M2 ubiquitination. An M2-K78R (Lys78→Arg78) mutant, which produces ubiquitination-deficient M2, showed a severe defect in production of infectious virus particles. M2-K78R mutant progeny contained more HA proteins, less viral RNAs and less internal viral proteins, including M1 and NP, than the wild-type virus. Furthermore, most of the M2-K78R mutant viral particles lacked viral ribonucleoproteins upon examination under electron microscopy and exhibited slightly lower densities. We also found that mutant M2 colocalized with M1 protein to a lesser extent than for wild-type virus. These findings may account for the reduced incorporation of viral ribonucleoprotein into virions. By blocking the second round of virus infection, we showed that the M2 ubiquitination-defective mutant exhibited normal level of virus replication during the first round of infection, thereby proving that M2 ubiquitination is involved in the virus production step. Finally, we found that M2-K78R mutant virus induced autophagy and apoptosis earlier than wild-type virus. Collectively, these results suggest that M2 ubiquitination plays an important role in infectious virus production by coordinating efficient packaging of the viral genome into virus particles and timing of viral-induced cell death.IMPORTANCEAnnual epidemics and recurring pandemics of influenza viruses represent a very high global health and economic burden. Influenza virus M2 protein has been extensively studied for its important roles in virus replication, particularly in viral entry and release. Rimantadine, one of the most commonly used antiviral drugs, binds to the channel lumen near the N-terminus of M2 proteins. However, viruses resistant to Rimantadine have emerged. M2 undergoes several posttranslational modifications, such as phosphorylation and palmitoylation. Here, we reveal that ubiquitination mediates the functional role of M2. A ubiquitination-deficient M2 mutant predominately produced virus particles either lacking viral ribonucleoproteins or containing smaller amounts of internal viral components, resulting in lower infectivity. Our findings offer insights into the mechanism of influenza virus morphogenesis, particularly the functional role of M1-M2 interactions in viral particle assembly, and can be applied to the development of new influenza therapies.


Sign in / Sign up

Export Citation Format

Share Document