scholarly journals The Influenza A Virus M2 Cytoplasmic Tail Is Required for Infectious Virus Production and Efficient Genome Packaging

2005 ◽  
Vol 79 (6) ◽  
pp. 3595-3605 ◽  
Author(s):  
Matthew F. McCown ◽  
Andrew Pekosz

ABSTRACT The M2 integral membrane protein encoded by influenza A virus possesses an ion channel activity that is required for efficient virus entry into host cells. The role of the M2 protein cytoplasmic tail in virus replication was examined by generating influenza A viruses encoding M2 proteins with truncated C termini. Deletion of 28 amino acids (M2Stop70) resulted in a virus that produced fourfold-fewer particles but >1,000-fold-fewer infectious particles than wild-type virus. Expression of the full-length M2 protein in trans restored the replication of the M2 truncated virus. Although the M2Stop70 virus particles were similar to wild-type virus in morphology, the M2Stop70 virions contained reduced amounts of viral nucleoprotein and genomic RNA, indicating a defect in vRNP packaging. The data presented indicate the M2 cytoplasmic tail plays a role in infectious virus production by coordinating the efficient packaging of genome segments into influenza virus particles.

2017 ◽  
pp. JVI.01972-17 ◽  
Author(s):  
Wen-Chi Su ◽  
Wen-Ya Yu ◽  
Shih-Han Huang ◽  
Michael M.C. Lai

Virus replication is mediated by interactions between virus and host. Here, we demonstrate that influenza A virus membrane protein 2 (M2) can be ubiquitinated. The lysine residue at position 78, which is located in the cytoplasmic domain of M2, is essential for M2 ubiquitination. An M2-K78R (Lys78→Arg78) mutant, which produces ubiquitination-deficient M2, showed a severe defect in production of infectious virus particles. M2-K78R mutant progeny contained more HA proteins, less viral RNAs and less internal viral proteins, including M1 and NP, than the wild-type virus. Furthermore, most of the M2-K78R mutant viral particles lacked viral ribonucleoproteins upon examination under electron microscopy and exhibited slightly lower densities. We also found that mutant M2 colocalized with M1 protein to a lesser extent than for wild-type virus. These findings may account for the reduced incorporation of viral ribonucleoprotein into virions. By blocking the second round of virus infection, we showed that the M2 ubiquitination-defective mutant exhibited normal level of virus replication during the first round of infection, thereby proving that M2 ubiquitination is involved in the virus production step. Finally, we found that M2-K78R mutant virus induced autophagy and apoptosis earlier than wild-type virus. Collectively, these results suggest that M2 ubiquitination plays an important role in infectious virus production by coordinating efficient packaging of the viral genome into virus particles and timing of viral-induced cell death.IMPORTANCEAnnual epidemics and recurring pandemics of influenza viruses represent a very high global health and economic burden. Influenza virus M2 protein has been extensively studied for its important roles in virus replication, particularly in viral entry and release. Rimantadine, one of the most commonly used antiviral drugs, binds to the channel lumen near the N-terminus of M2 proteins. However, viruses resistant to Rimantadine have emerged. M2 undergoes several posttranslational modifications, such as phosphorylation and palmitoylation. Here, we reveal that ubiquitination mediates the functional role of M2. A ubiquitination-deficient M2 mutant predominately produced virus particles either lacking viral ribonucleoproteins or containing smaller amounts of internal viral components, resulting in lower infectivity. Our findings offer insights into the mechanism of influenza virus morphogenesis, particularly the functional role of M1-M2 interactions in viral particle assembly, and can be applied to the development of new influenza therapies.


2006 ◽  
Vol 80 (16) ◽  
pp. 8178-8189 ◽  
Author(s):  
Matthew F. McCown ◽  
Andrew Pekosz

ABSTRACT The cytoplasmic tail of the influenza A virus M2 protein is highly conserved among influenza A virus isolates. The cytoplasmic tail appears to be dispensable with respect to the ion channel activity associated with the protein but important for virus morphology and the production of infectious virus particles. Using reverse genetics and transcomplementation assays, we demonstrate that the M2 protein cytoplasmic tail is a crucial mediator of infectious virus production. Truncations of the M2 cytoplasmic tail result in a drastic decrease in infectious virus titers, a reduction in the amount of packaged viral RNA, a decrease in budding events, and a reduction in budding efficiency. The M1 protein binds to the M2 cytoplasmic tail, but the M1 binding site is distinct from the sequences that affect infectious virus particle formation. Influenza A virus strains A/Udorn/72 and A/WSN/33 differ in their requirements for M2 cytoplasmic tail sequences, and this requirement maps to the M1 protein. We conclude that the M2 protein is required for the formation of infectious virus particles, implicating the protein as important for influenza A virus assembly in addition to its well-documented role during virus entry and uncoating.


2005 ◽  
Vol 79 (12) ◽  
pp. 7926-7932 ◽  
Author(s):  
Svetlana V. Bourmakina ◽  
Adolfo García-Sastre

ABSTRACT We generated a recombinant influenza A virus (Mmut) that produced low levels of matrix (M1) and M2 proteins in infected cells. Mmut virus propagated to significantly lower titers than did wild-type virus in cells infected at low multiplicity. By contrast, virion morphology and incorporation of viral proteins and vRNAs into virus particles were similar to those of wild-type virus. We propose that a threshold amount of M1 protein is needed for the assembly of viral components into an infectious particle and that budding is delayed in Mmut virus-infected cells until sufficient levels of M1 protein accumulate at the plasma membrane.


2017 ◽  
Vol 92 (1) ◽  
Author(s):  
Hsuan Liu ◽  
Michael L. Grantham ◽  
Andrew Pekosz

ABSTRACTThe influenza A virus M1 and M2 proteins play important roles in virus assembly and in the morphology of virus particles. Mutations in the distal cytoplasmic tail region of M2, and in particular a tyrosine-to-alanine mutation at residue 76 (Y76A), were essential for infectious virus production and filament formation while having limited effects on total virus particle budding. Using a novel selection method, mutations at seven different M1 amino acids (residue 73, 94, 135, 136, or 138 or a double mutation, 93/244) that are not found in circulating influenza virus strains or have not been previously identified to play a role in influenza A virus assembly were found to complement the lethal M2Y76A mutation. These M1 suppressor mutations restored infectious virus production in the presence of M2Y76A and mediated increased budding and filament formation even in the absence of M2. However, the efficiency of infectious virus replication was still dependent on the presence of the distal region of the M2 cytoplasmic tail. The data suggest that influenza A virus budding and genome incorporation can occur independently and provide further support for complementary roles of the M1 and M2 proteins in virus assembly.IMPORTANCEInfluenza virus particle assembly involves the careful coordination of various viral and host factors to optimally produce infectious virus particles. We have previously identified a mutation at position 76 of the influenza A virus M2 protein that drastically reduces infectious virus production and filament formation with minimal effects on virus budding. In this work, we identified suppressor mutations in the M1 protein which complement this lethal M2 mutation by increasing the efficiency with which virus particles bud from infected cells and restoring filament formation at the infected-cell surface. M2 distal cytoplasmic domain sequences were still required for optimal infectivity. This indicates that M1 and M2 can functionally replace each other in some, but not all, aspects of virus particle assembly.


2008 ◽  
Vol 82 (23) ◽  
pp. 11869-11879 ◽  
Author(s):  
Edward C. Hutchinson ◽  
Martin D. Curran ◽  
Eliot K. Read ◽  
Julia R. Gog ◽  
Paul Digard

ABSTRACT The genomic viral RNA (vRNA) segments of influenza A virus contain specific packaging signals at their termini that overlap the coding regions. To further characterize cis-acting signals in segment 7, we introduced synonymous mutations into the terminal coding regions. Mutation of codons that are normally highly conserved reduced virus growth in embryonated eggs and MDCK cells between 10- and 1,000-fold compared to that of the wild-type virus, whereas similar alterations to nonconserved codons had little effect. In all cases, the growth-impaired viruses showed defects in virion assembly and genome packaging. In eggs, nearly normal numbers of virus particles that in aggregate contained apparently equimolar quantities of the eight segments were formed, but with about fourfold less overall vRNA content than wild-type virions, suggesting that, on average, fewer than eight segments per particle were packaged. Concomitantly, the particle/PFU and segment/PFU ratios of the mutant viruses showed relative increases of up to 300-fold, with the behavior of the most defective viruses approaching that predicted for random segment packaging. Fluorescent staining of infected cells for the nucleoprotein and specific vRNAs confirmed that most mutant virus particles did not contain a full genome complement. The specific infectivity of the mutant viruses produced by MDCK cells was also reduced, but in this system, the mutations also dramatically reduced virion production. Overall, we conclude that segment 7 plays a key role in the influenza A virus genome packaging process, since mutation of as few as 4 nucleotides can dramatically inhibit infectious virus production through disruption of vRNA packaging.


2010 ◽  
Vol 84 (17) ◽  
pp. 8765-8776 ◽  
Author(s):  
Michael L. Grantham ◽  
Shaun M. Stewart ◽  
Erin N. Lalime ◽  
Andrew Pekosz

ABSTRACT The cytoplasmic tail of the influenza A virus M2 protein is required for the production of infectious virions. In this study, critical residues in the M2 cytoplasmic tail were identified by single-alanine scanning mutagenesis. The tyrosine residue at position 76, which is conserved in >99% of influenza virus strains sequenced to date, was identified as being critical for the formation of infectious virus particles using both reverse genetics and a protein trans-complementation assay. Recombinant viruses encoding M2 with the Y76A mutation demonstrated replication defects in MDCK cells as well as in primary differentiated airway epithelial cell cultures, defects in the formation of filamentous virus particles, and reduced packaging of nucleoprotein into virus particles. These defects could all be overcome by a mutation of serine to tyrosine at position 71 of the M2 cytoplasmic tail, which emerged after blind passage of viruses containing the Y76A mutation. These data confirm and extend our understanding of the significance of the M2 protein for infectious virus particle assembly.


2006 ◽  
Vol 80 (11) ◽  
pp. 5233-5240 ◽  
Author(s):  
Kiyoko Iwatsuki-Horimoto ◽  
Taisuke Horimoto ◽  
Takeshi Noda ◽  
Maki Kiso ◽  
Junko Maeda ◽  
...  

ABSTRACT The viral replication cycle concludes with the assembly of viral components to form progeny virions. For influenza A viruses, the matrix M1 protein and two membrane integral glycoproteins, hemagglutinin and neuraminidase, function cooperatively in this process. Here, we asked whether another membrane protein, the M2 protein, plays a role in virus assembly. The M2 protein, comprising 97 amino acids, possesses the longest cytoplasmic tail (54 residues) of the three transmembrane proteins of influenza A viruses. We therefore generated a series of deletion mutants of the M2 cytoplasmic tail by reverse genetics. We found that mutants in which more than 22 amino acids were deleted from the carboxyl terminus of the M2 tail were viable but grew less efficiently than did the wild-type virus. An analysis of the virions suggested that viruses with M2 tail deletions of more than 22 carboxy-terminal residues apparently contained less viral ribonucleoprotein complex than did the wild-type virus. These M2 tail mutants also differ from the wild-type virus in their morphology: while the wild-type virus is spherical, some of the mutants were filamentous. Alanine-scanning experiments further indicated that amino acids at positions 74 to 79 of the M2 tail play a role in virion morphogenesis and affect viral infectivity. We conclude that the M2 cytoplasmic domain of influenza A viruses plays an important role in viral assembly and morphogenesis.


Sign in / Sign up

Export Citation Format

Share Document