Myo-inositol hexasulphate and low molecular weight heparin binding to human acidic fibroblast growth factor: a calorimetric and FTIR study

2001 ◽  
Vol 28 (4) ◽  
pp. 305-313 ◽  
Author(s):  
Mercedes Guzmán-Casado ◽  
Antonio Cardenete ◽  
Guillermo Giménez-Gallego ◽  
Antonio Parody-Morreale
1991 ◽  
Vol 11 (4) ◽  
pp. 2319-2323 ◽  
Author(s):  
J S Doctor ◽  
F M Hoffmann ◽  
B B Olwin

As assessed by competitive binding and protein-crosslinking experiments, Drosophila melanogaster cells possess basic fibroblast growth factor (bFGF)-specific binding proteins that are similar to FGF receptors on vertebrate cells in molecular weight and binding affinity; these D. melanogaster cells, however, have no detectable binding proteins for acidic fibroblast growth factor (aFGF). Consistent with the presence of bFGF-specific binding proteins, D. melanogaster cells degrade bFGF but not aFGF. These results indicate the conservation of heparin-binding growth factors and receptors between vertebrates and D. melanogaster.


1991 ◽  
Vol 11 (4) ◽  
pp. 2319-2323
Author(s):  
J S Doctor ◽  
F M Hoffmann ◽  
B B Olwin

As assessed by competitive binding and protein-crosslinking experiments, Drosophila melanogaster cells possess basic fibroblast growth factor (bFGF)-specific binding proteins that are similar to FGF receptors on vertebrate cells in molecular weight and binding affinity; these D. melanogaster cells, however, have no detectable binding proteins for acidic fibroblast growth factor (aFGF). Consistent with the presence of bFGF-specific binding proteins, D. melanogaster cells degrade bFGF but not aFGF. These results indicate the conservation of heparin-binding growth factors and receptors between vertebrates and D. melanogaster.


2013 ◽  
Vol 304 (10) ◽  
pp. H1382-H1396 ◽  
Author(s):  
Janet R. Manning ◽  
Sarah O. Perkins ◽  
Elizabeth A. Sinclair ◽  
Xiaoqian Gao ◽  
Yu Zhang ◽  
...  

Among its many biological roles, fibroblast growth factor-2 (FGF2) acutely protects the heart from dysfunction associated with ischemia/reperfusion (I/R) injury. Our laboratory has demonstrated that this is due to the activity of the low molecular weight (LMW) isoform of FGF2 and that FGF2-mediated cardioprotection relies on the activity of protein kinase C (PKC); however, which PKC isoforms are responsible for LMW FGF2-mediated cardioprotection, and their downstream targets, remain to be elucidated. To identify the PKC pathway(s) that contributes to postischemic cardiac recovery by LMW FGF2, mouse hearts expressing only LMW FGF2 (HMWKO) were bred to mouse hearts not expressing PKCα (PKCαKO) or subjected to a selective PKCε inhibitor (εV1–2) before and during I/R. Hearts only expressing LMW FGF2 showed significantly improved postischemic recovery of cardiac function following I/R ( P < 0.05), which was significantly abrogated in the absence of PKCα ( P < 0.05) or presence of PKCε inhibition ( P < 0.05). Hearts only expressing LMW FGF2 demonstrated differences in actomyosin ATPase activity as well as increases in the phosphorylation of troponin I and T during I/R compared with wild-type hearts; several of these effects were dependent on PKCα activity. This evidence indicates that both PKCα and PKCε play a role in LMW FGF2-mediated protection from cardiac dysfunction and that PKCα signaling to the contractile apparatus is a key step in the mechanism of LMW FGF2-mediated protection against myocardial dysfunction.


Sign in / Sign up

Export Citation Format

Share Document