scholarly journals Low molecular weight fibroblast growth factor-2 signals via protein kinase C and myofibrillar proteins to protect against postischemic cardiac dysfunction

2013 ◽  
Vol 304 (10) ◽  
pp. H1382-H1396 ◽  
Author(s):  
Janet R. Manning ◽  
Sarah O. Perkins ◽  
Elizabeth A. Sinclair ◽  
Xiaoqian Gao ◽  
Yu Zhang ◽  
...  

Among its many biological roles, fibroblast growth factor-2 (FGF2) acutely protects the heart from dysfunction associated with ischemia/reperfusion (I/R) injury. Our laboratory has demonstrated that this is due to the activity of the low molecular weight (LMW) isoform of FGF2 and that FGF2-mediated cardioprotection relies on the activity of protein kinase C (PKC); however, which PKC isoforms are responsible for LMW FGF2-mediated cardioprotection, and their downstream targets, remain to be elucidated. To identify the PKC pathway(s) that contributes to postischemic cardiac recovery by LMW FGF2, mouse hearts expressing only LMW FGF2 (HMWKO) were bred to mouse hearts not expressing PKCα (PKCαKO) or subjected to a selective PKCε inhibitor (εV1–2) before and during I/R. Hearts only expressing LMW FGF2 showed significantly improved postischemic recovery of cardiac function following I/R ( P < 0.05), which was significantly abrogated in the absence of PKCα ( P < 0.05) or presence of PKCε inhibition ( P < 0.05). Hearts only expressing LMW FGF2 demonstrated differences in actomyosin ATPase activity as well as increases in the phosphorylation of troponin I and T during I/R compared with wild-type hearts; several of these effects were dependent on PKCα activity. This evidence indicates that both PKCα and PKCε play a role in LMW FGF2-mediated protection from cardiac dysfunction and that PKCα signaling to the contractile apparatus is a key step in the mechanism of LMW FGF2-mediated protection against myocardial dysfunction.

PROTEOMICS ◽  
2006 ◽  
Vol 6 (4) ◽  
pp. 1166-1174 ◽  
Author(s):  
Byung-Gyu Kim ◽  
Hyun-Jung Kim ◽  
Hye-Jeong Park ◽  
Youn-Jeong Kim ◽  
Won-Joon Yoon ◽  
...  

2009 ◽  
Vol 20 (11) ◽  
pp. 2697-2708 ◽  
Author(s):  
Florence Lima ◽  
Corinne Niger ◽  
Carla Hebert ◽  
Joseph P. Stains

In this study, we examine the role of the gap junction protein, connexin43 (Cx43), in the transcriptional response of osteocalcin to fibroblast growth factor 2 (FGF2) in MC3T3 osteoblasts. By luciferase reporter assays, we identify that the osteocalcin transcriptional response to FGF2 is markedly increased by overexpression of Cx43, an effect that is mediated by Runx2 via its OSE2 cognate element, but not by a previously identified connexin-responsive Sp1/Sp3-binding element. Furthermore, disruption of Cx43 function with Cx43 siRNAs or overexpression of connexin45 markedly attenuates the response to FGF2. Inhibition of protein kinase C delta (PKCδ) with rottlerin or siRNA-mediated knockdown abrogates the osteocalcin response to FGF2. Additionally, we show that upon treatment with FGF2, PKCδ translocates to the nucleus, PKCδ and Runx2 are phosphorylated and these events are enhanced by Cx43 overexpression, suggesting that the degree of activation is enhanced by increased Cx43 levels. Indeed, chromatin immunoprecipitations of the osteocalcin proximal promoter with antibodies against Runx2 demonstrate that the recruitment of Runx2 to the osteocalcin promoter in response to FGF2 treatment is dramatically enhanced by Cx43 overexpression. Thus, Cx43 plays a critical role in regulating the ability of osteoblasts to respond to FGF2 by impacting PKCδ and Runx2 function.


Sign in / Sign up

Export Citation Format

Share Document