scholarly journals Identification of a fibroblast growth factor-binding protein in Drosophila melanogaster.

1991 ◽  
Vol 11 (4) ◽  
pp. 2319-2323 ◽  
Author(s):  
J S Doctor ◽  
F M Hoffmann ◽  
B B Olwin

As assessed by competitive binding and protein-crosslinking experiments, Drosophila melanogaster cells possess basic fibroblast growth factor (bFGF)-specific binding proteins that are similar to FGF receptors on vertebrate cells in molecular weight and binding affinity; these D. melanogaster cells, however, have no detectable binding proteins for acidic fibroblast growth factor (aFGF). Consistent with the presence of bFGF-specific binding proteins, D. melanogaster cells degrade bFGF but not aFGF. These results indicate the conservation of heparin-binding growth factors and receptors between vertebrates and D. melanogaster.

1991 ◽  
Vol 11 (4) ◽  
pp. 2319-2323
Author(s):  
J S Doctor ◽  
F M Hoffmann ◽  
B B Olwin

As assessed by competitive binding and protein-crosslinking experiments, Drosophila melanogaster cells possess basic fibroblast growth factor (bFGF)-specific binding proteins that are similar to FGF receptors on vertebrate cells in molecular weight and binding affinity; these D. melanogaster cells, however, have no detectable binding proteins for acidic fibroblast growth factor (aFGF). Consistent with the presence of bFGF-specific binding proteins, D. melanogaster cells degrade bFGF but not aFGF. These results indicate the conservation of heparin-binding growth factors and receptors between vertebrates and D. melanogaster.


1991 ◽  
Vol 45 (2) ◽  
pp. 131-138 ◽  
Author(s):  
Wilson H. Burgess ◽  
Anne M. Shaheen ◽  
Brian Hampton ◽  
Patrick J. Donohue ◽  
Jeffrey A. Winkles

1999 ◽  
Vol 341 (3) ◽  
pp. 613-620 ◽  
Author(s):  
Joseph C. DAVIS ◽  
Ganesh VENKATARAMAN ◽  
Zachary SHRIVER ◽  
P. Antony RAJ ◽  
Ram SASISEKHARAN

Basic fibroblast growth factor (FGF-2) represents a class of heparin-binding growth factors that are stored in the extracellular matrix attached to heparin-like glycosaminoglycans (HLGAGs). It has been proposed that cell surface HLGAGs have a central role in the biological activity of FGF-2, presumably by inducing dimers or oligomers of FGF-2 and leading to the dimerization or oligomerization of FGF receptor and hence signal transduction. We have previously proposed that FGF-2 possesses a natural tendency to self-associate to form FGF-2 dimers and oligomers; HLGAGs would enhance FGF-2 self-association. Here, through a combination of spectroscopic, chemical cross-linking and spectrometric techniques, we provide direct evidence for the self-association of FGF-2 in the absence of HLGAGs, defying the notion that HLGAGs induce FGF-2 oligomerization. Further, the addition of HLGAGs seems to enhance significantly the FGF-2 oligomerization process without affecting the relative percentages of FGF-2 dimers, trimers or oligomers. FGF-2 self-association is consistent with FGF-2's possessing biological activity both in the presence and in the absence of HLGAGs; this leads us to propose that FGF-2 self-association enables FGF-2 to signal both in the presence and in the absence of HLGAGs.


2002 ◽  
Vol 31 (1-3) ◽  
pp. 45-54 ◽  
Author(s):  
Mercedes Guzmán-Casado ◽  
Marı́a M Garcı́a-Mira ◽  
José M Sánchez-Ruiz ◽  
Guillermo Giménez-Gallego ◽  
Antonio Parody-Morreale

1990 ◽  
Vol 110 (4) ◽  
pp. 1417-1426 ◽  
Author(s):  
H Sano ◽  
R Forough ◽  
J A Maier ◽  
J P Case ◽  
A Jackson ◽  
...  

The synovium from patients with rheumatoid arthritis (RA) and LEW/N rats with streptococcal cell wall (SCW) arthritis, an experimental model resembling RA, is characterized by massive proliferation of synovial connective tissues and invasive destruction of periarticular bone and cartilage. Since heparin binding growth factor (HBGF)-1, the precursor of acidic fibroblast growth factor (FGF), is a potent angiogenic polypeptide and mitogen for mesenchymal cells, we sought evidence that it was involved in the synovial pathology of RA and SCW arthritis. HBGF-1 mRNA was detected in RA synovium using the polymerase chain reaction technique, and its product was immunolocalized intracellularly in both RA and osteoarthritis (OA) synovium. HBGF-1 staining was more extensive and intense in synovium of RA patients than OA and correlated with the extent and intensity of synovial mononuclear cell infiltration. HBGF-1 staining also correlated with c-Fos protein staining. In SCW arthritis, HBGF-1 immunostaining was noted in bone marrow, bone, cartilage, synovium, ligamentous and tendinous structures, as well as various dermal structures and developed early in both T-cell competent and incompetent rats. Persistent high level immunostaining of HBGF-1 was only noted in T-cell competent rats like the disease process in general. These observations implicate HBGF-1 in a multitude of biological functions in inflammatory joint diseases.


Sign in / Sign up

Export Citation Format

Share Document