Effect of maturation on the fluoride release of resin-modified glass ionomer and polyacid-modified composite resin cements

Biomaterials ◽  
2000 ◽  
Vol 21 (13) ◽  
pp. 1373-1378 ◽  
Author(s):  
L Marks
2004 ◽  
Vol 841 ◽  
Author(s):  
Claudia Centeno ◽  
Ulises Ruiz ◽  
Oscar Contreras ◽  
Enrique C. Samano

ABSTRACTThe risk of dental caries increases with the use of orthodontic appliances, and it does not only depend on a patient's oral hygiene. Caries cause teeth enamel demineralization close to the orthodontic bracket. The hardness of the teeth consequently decreases, and they become brittle and loose. The type of adhesive used to fix brackets may or may not reduce enamel demineralization. Previous studies have shown that a resin-modified glass ionomer (RMGI) inhibits demineralization. The purpose of this work is to evaluate the effect of a fluoride-releasing bracket on mechanical properties of dentin and enamel on regions adjacent to orthodontic brackets bonded with RMGI and composite resin cements. The remineralization effect due to fluoride on teeth was assessed by measuring hardness and reduced elastic modulus on dentin, enamel and dentin-enamel junction (DEJ) around the bracket area by nanoindentation methods. Nanoindentation was performed using a TriboScope from Hysitron. For this purpose two sets of polished samples were prepared: one sample was a cut along a longitudinal section and the other one along a cross-section of a tooth with orthodontic treatment using RMGI. Anisotropy in the mechanical properties of the teeth is observed along each direction.


2004 ◽  
Vol 844 ◽  
Author(s):  
Claudia Centeno ◽  
Ulises Ruiz ◽  
Oscar Contreras ◽  
Enrique C. Samano

ABSTRACTThe risk of dental caries increases with the use of orthodontic appliances, and it does not only depend on a patient's oral hygiene. Caries cause teeth enamel demineralization close to the orthodontic bracket. The hardness of the teeth consequently decreases, and they become brittle and loose. The type of adhesive used to fix brackets may or may not reduce enamel demineralization. Previous studies have shown that a resin-modified glass ionomer (RMGI) inhibits demineralization. The purpose of this work is to evaluate the effect of a fluoride-releasing bracket on mechanical properties of dentin and enamel on regions adjacent to orthodontic brackets bonded with RMGI and composite resin cements. The remineralization effect due to fluoride on teeth was assessed by measuring hardness and reduced elastic modulus on dentin, enamel and dentin-enamel junction (DEJ) around the bracket area by nanoindentation methods. Nanoindentation was performed using a TriboScope from Hysitron. For this purpose two sets of polished samples were prepared: one sample was a cut along a longitudinal section and the other one along a cross-section of a tooth with orthodontic treatment using RMGI. Anisotropy in the mechanical properties of the teeth is observed along each direction.


2004 ◽  
Vol 12 (1) ◽  
pp. 12-17 ◽  
Author(s):  
Linda Wang ◽  
Marília Afonso Rabelo Buzalaf ◽  
Maria Teresa Atta

A dhesive systems associated to resin-modified glass ionomer cements are employed for the achievement of a higher bond strength to dentin. Despite this benefit, other properties should not be damaged. This study aimed at evaluating the short-time fluoride release of a resin-modified glass ionomer cement coated with two one-bottle adhesive systems in a pH cycling system. Four combinations were investigated: G1: Vitremer (V); G2: Vitremer + Primer (VP); G3: Vitremer + Single Bond (VSB) and G4: Vitremer + Prime & Bond 2.1 (VPB). SB is a fluoride-free and PB is a fluoride-containing system. After preparation of the Vitremer specimens, two coats of the selected adhesive system were carefully applied and light-cured. Specimens were immersed in demineralizing solution for 6 hours followed by immersion in remineralizing solution for 18 hours, totalizing the 15-day cycle. All groups released fluoride in a similar pattern, with a greater release in the beginning and decreasing with time. VP showed the greatest fluoride release, followed by V, with no statistical difference. VSB and VPB released less fluoride compared to V and VP, with statistical difference. Regardless the one-bottle adhesive system, application of coating decreased the fluoride release from the resin-modified glass ionomer cements. This suggests that this combination would reduce the beneficial effect of the restorative material to the walls around the restoration.


2013 ◽  
Vol 38 (2) ◽  
pp. 186-196 ◽  
Author(s):  
Camila Sabatini ◽  
Manthan Patel ◽  
Eric D'Silva

SUMMARY Objective To evaluate the shear bond strength (SBS) of three self-adhesive resin cements and a resin-modified glass ionomer cement (RMGIC) to different prosthodontic substrates. Materials and Methods The substrates base metal, noble metal, zirconia, ceramic, and resin composite were used for bonding with different cements (n=12). Specimens were placed in a bonding jig, which was filled with one of four cements (RelyX Unicem, Multilink Automix, Maxcem Elite, and FujiCEM Automix). Both light-polymerizing (LP) and self-polymerizing (SP) setting reactions were tested. Shear bond strength was measured at 15 minutes and 24 hours in a testing device at a test speed of 1 mm/min and expressed in MPa. A Student t-test and a one-way analysis of variance (ANOVA) were used to evaluate differences between setting reactions, between testing times, and among cements irrespective of other factors. Generalized linear regression model and Tukey tests were used for multifactorial analysis. Results Significantly higher mean SBS were demonstrated for LP mode relative to SP mode (p<0.001) and for 24 hours relative to 15 minutes (p<0.001). Multifactorial analysis revealed that all factors (cement, substrate, and setting reaction) and all their interactions had a significant effect on the bond strength (p<0.001). Resin showed significantly higher SBS than other substrates when bonded to RelyX Unicem and Multilink Automix in LP mode (p<0.05). Overall, FujiCEM demonstrated significantly lower SBS than the three self-adhesive resin cements (p<0.05). Conclusions Overall, higher bond strengths were demonstrated for LP relative to SP mode, 24 hours relative to 15 minutes and self-adhesive resin cements compared to the RMGICs. Bond strengths also varied depending on the substrate, indicating that selection of luting cement should be partially dictated by the substrate and the setting reaction.


1998 ◽  
Vol 2 (3) ◽  
pp. 143-146 ◽  
Author(s):  
W. Geurtsen ◽  
P. Bubeck ◽  
G. Leyhausen ◽  
F. Garcia-Godoy

2021 ◽  
Vol 20 ◽  
pp. e213981
Author(s):  
Fariba Motevasselian ◽  
Hamid Kermanshah ◽  
Ebrahim Rasoulkhani ◽  
Mutlu Özcan

Aim: To compare the microleakage of Cention N, a subgroup of composite resins with a resin-modified glass ionomer (RMGI) and a composite resin. Methods: Class V cavities were prepared on the buccal and lingual surfaces of 46 extracted human molars. The teeth were randomly assigned to four groups. Group A: Tetric N-Bond etch-and-rinse adhesive and Tetric N-Ceram nanohybrid composite resin, group B: Cention N without adhesive, group C: Cention N with adhesive, and group D: Fuji II LC RMGI. The teeth were thermocycled between 5°-55°C (×10,000). The teeth were coated with two layers of nail vanish except for 1 mm around the restoration margins, and immersed in 2% methylene blue (37°C, 24 h) before buccolingual sectioning to evaluate dye penetration under a stereomicroscope (×20). The data were analyzed by the Kruskal-Wallis and Wilcoxon tests (α=0.05). Results: Type of material and restoration margin had significant effects on the microleakage (p<0.05). Dentin margins showed a higher leakage score in all groups. Cention N and RMGI groups showed significant differences at the enamel margin (p=0.025, p=0.011), and for the latter group the scores were higher. No significant difference was found at the dentin margins between the materials except between Cention N with adhesive and RMGI (p=0.031). Conclusion: Microleakage was evident in all three restorative materials. Cention N groups showed similar microleakage scores to the composite resin and displayed lower microleakage scores compared with RMGI.


Sign in / Sign up

Export Citation Format

Share Document