Synthetically modified cellulose: an alternative to synthetic membranes for use in haemodialysis?

Biomaterials ◽  
1997 ◽  
Vol 18 (19) ◽  
pp. 1299-1303 ◽  
Author(s):  
Nicholas A. Hoenich ◽  
Celia Woffindin ◽  
Susan Stamp ◽  
Sarah J. Roberts ◽  
Jean Turnbull
2011 ◽  
Vol 2011 ◽  
pp. 1-3 ◽  
Author(s):  
Feyisayo Olafiranye ◽  
Win Kyaw ◽  
Oladipupo Olafiranye

Blood and dialyzer membrane interaction can cause significant thrombocytopenia through the activation of complement system. The extent of this interaction determines the biocompatibility of the membrane. Although the newer synthetic membranes have been shown to have better biocompatibility profile than the cellulose-based membranes, little is known about the difference in biocompatibility between synthetic membrane and modified cellulose membrane. Herein, we report a case of a patient on hemodialysis who developed dialyzer-membrane-related thrombocytopenia with use of synthetic membrane (F200NR polysulfone). The diagnosis of dialyzer membrane-associated thrombocytopenia was suspected by the trend of platelet count before and after dialysis, and the absence of other possible causes of thrombocytopenia. We observed significant improvement in platelet count when the membrane was changed to modified cellulose membrane (cellulose triacetate). In patients at high risk for thrombocytopenia, the modified cellulose membrane could be a better alternative to the standard synthetic membranes during hemodialysis.


Cellulose ◽  
2021 ◽  
Author(s):  
Mohammed Majdoub ◽  
Younes Essamlali ◽  
Othmane Amadine ◽  
Ikram Ganetri ◽  
Anass Hafnaoui ◽  
...  

2021 ◽  
Vol 5 (6) ◽  
pp. 162
Author(s):  
Rasmeet Singh ◽  
Mandeep Singh ◽  
Nisha Kumari ◽  
Janak ◽  
Sthitapragyan Maharana ◽  
...  

Synthetic membranes are currently employed for multiple separation applications in various industries. They may have been prepared from organic or inorganic materials. Present research majorly focuses on polymeric (i.e., organic) membranes because they show better flexibility, pore formation mechanism, and thermal and chemical stability, and demand less area for installation. Dendritic, carbon nanotube, graphene and graphene oxide, metal and metal oxide, zwitter-ionic, and zeolite-based membranes are among the most promised water treatment membranes. This paper critically reviews the ongoing developments to utilize nanocomposite membranes to purify water. Various membranes have been reported to study their resistance and fouling properties. A special focus is given towards multiple ways in which these nanocomposite membranes can be employed. Therefore, this review provides a platform to develop the awareness of current research and motivate its readers to make further progress for utilizing nanocomposite membranes in water purification.


Sign in / Sign up

Export Citation Format

Share Document