Accelerator-driven system for transmutation of high-level waste

2000 ◽  
Vol 37 (1-4) ◽  
pp. 339-344 ◽  
Author(s):  
Kazufumi Tsujimoto ◽  
Toshinobu Sasa ◽  
Kenji Nishihara ◽  
Takakazu Takizuka ◽  
Hideki Takano
2020 ◽  
Vol 35 (4) ◽  
pp. 294-303
Author(s):  
Amer Al Qaaod ◽  
Volodymyr Pavlovych ◽  
Danas Ridikas ◽  
Volodymyr Gulik ◽  
Esmat Amin

In this paper, the feasibility of high-level radioactive waste transmutation in accelerator driven system sub-critical reactor assembly, has been studied for two zone's model and with three different core configurations. The inner zone has a fast neutron spectrum and the outer one has a thermal neutron spectrum. The subcritical core is coupled with external neutron source of energy 14 MeV (D-T source). The effects of high level waste isotopes sample (238Pu, 239Pu, 240Pu, 241Pu, 242Pu, 241Am, 243Am, 244Cm, and 245Cm) distribution on the neutron spectrum and burnup performance in the inner zone have been investigated and discussed, by proposed three core configurations non-uniform, uniform, and spiral. The burnup calculations have been performed for one-year operation cycle for all the all proposed models. This work shows that one can effectively transmute most of the actual minor actinides isotopes in the inner fast spectrum zone of the proposed system, with optimal distribution of these isotopes.


2013 ◽  
Vol 28 (2) ◽  
pp. 128-136 ◽  
Author(s):  
Seyed Feghhi ◽  
Zohreh Gholamzadeh

The accelerator driven system is an innovative reactor which is being considered as a dedicated high-level waste burner. The function of the spallation target in accelerator driven system is to convert the incident high-energy particle beam to low-energy neutrons. One of the quantities of most interest for practical purposes is the number of neutrons produced per proton in a spallation target. However, this vital value depends not only on the material, but on the size of the target as well, due to the internuclear cascade. The MCNPX 2.4 code can be used for spallation target computation. Some benchmark results have been compared with MCNPX 2.4 simulations to verify the code's potential for calculating various parameters of an accelerator driven system target. Using the computation method, neutron interaction processes such as loss, capture and (n, xn) into a spallation target have been studied for W, Ta, Pb, Bi, and LBE spallation targets in different target dimensions. With relative errors less than 10%, the numerical simulation provided by the MCNPX code agrees qualitatively with other simulation results previously carried out, qualifying it for spallation calculations. Among the studied targets, W and Ta targets resulted in a higher neutron spallation yield using lesser target dimensions. Pb, Bi, and LBE spallation targets behave similarly regarding the accessible leaked neutron yield on the outer surface of the spallation target. By use of a thicker target, LBE can compete with both W and Ta targets regarding the neutron yield parameter.


2013 ◽  
Vol 3 (1) ◽  
pp. 60-69 ◽  
Author(s):  
Hamid Aït Abderrahim ◽  
Didier De Bruyn ◽  
Gert Van den Eynde ◽  
Sidney Michiels

Author(s):  
Hamid Aït Abderrahim ◽  
Didier De Bruyn ◽  
Gert Van den Eynde ◽  
Sidney Michiels

Sign in / Sign up

Export Citation Format

Share Document