Hanford waste treatment plant Immobilized High Level Waste (IHLW) canister radiation dose rate and radiolytic heat load analysis

2003 ◽  
Author(s):  
R M PIERSON
2021 ◽  
Author(s):  
Jingyi Shen ◽  
Zonghuan Chen ◽  
Bingheng Wang ◽  
Guiling Gao

Abstract In high-level waste treatment plants, rooms where the highly radioactive sources (such as the vitrification containers) are operated have high radiation protection risk. On the purpose of ensuring the safety of operators, it is necessary to design corresponding shielding walls, windows and shielding doors to guarantee that the dose rate at the personal operating location outside the room meets corresponding control requirements. Compared with walls, the radiation safety designs of the doors and windows are more complicated. In this article, a shielding door of a hot room inside a high-level waste treatment plant is selected. By means of combing the source characteristics and the source location, the gap between the door and door frame as well as the lap joints of the door and the wall are analyzed in order to characterize the influence factor of the dose rate outside the shielding door. The results illustrate that, under the premise that the shielding design requirements are satisfied, the lap joint between shielding wall and door has a significant impact on the outdoor dose field due to the oblique incidence of the radiation ray. Therefore, in the follow-up design of the radiation shielding door, A certain overlap form of the lap joints between the door and the wall need to be satisfied, furthermore, special attention need to be paid to the shielding of radioactive sources with weak self-shielding effect and strong penetration ability, for ensuring the shielding door to the greatest extent radiation protection ability.


Author(s):  
Bo Yang ◽  
Qianglin Wei ◽  
Hexi Wu ◽  
Xujia Luo ◽  
Yibao Liu

Radiation dose and personnel protection are among the safety goals of geological disposal of high-level radioactive waste. The calculation of the dose field on the surface of the packaging container is of great significance for the research on the dose constraint value of the repository. This paper built model consulting the Sweden KBS-3 canister, the temporal and spatial distribution of the dose rate on canister surface was calculated by Monte Carlo method, the temporal and spatial distribution of radiation dose rate of the tunnel was obtained. The research results showed that the photon dose rate on canister surface was greater than the neutron dose rate by 4 to 6 orders of magnitude, and the dose value of repository tunnel within 100 thousand years was lower than the ICRP recommended dose limit value (0.3 mSv/a) by 5 orders of magnitude.


2018 ◽  
Vol 2 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Tee L. Guidotti

On 16 October 1996, a malfunction at the Swan Hills Special Waste Treatment Center (SHSWTC) in Alberta, Canada, released an undetermined quantity of persistent organic pollutants (POPs) into the atmosphere, including polychlorinated biphenyls, dioxins, and furans. The circumstances of exposure are detailed in Part 1, Background and Policy Issues. An ecologically based, staged health risk assessment was conducted in two parts with two levels of government as sponsors. The first, called the Swan Hills Study, is described in Part 2. A subsequent evaluation, described here in Part 3, was undertaken by Health Canada and focused exclusively on Aboriginal residents in three communities living near the lake, downwind, and downstream of the SHSWTC of the area. It was designed to isolate effects on members living a more traditional Aboriginal lifestyle. Aboriginal communities place great cultural emphasis on access to traditional lands and derive both cultural and health benefits from “country foods” such as venison (deer meat) and local fish. The suspicion of contamination of traditional lands and the food supply made risk management exceptionally difficult in this situation. The conclusion of both the Swan Hills and Lesser Slave Lake studies was that although POPs had entered the ecosystem, no effect could be demonstrated on human exposure or health outcome attributable to the incident. However, the value of this case study is in the detail of the process, not the ultimate dimensions of risk. The findings of the Lesser Slave Lake Study have not been published previously and are incomplete.


1988 ◽  
Vol 20 (11-12) ◽  
pp. 131-136 ◽  
Author(s):  
A. D. Wong ◽  
C. D. Goldsmith

The effect of discharging specific oil degrading bacteria from a chemostat to a refinery activated sludge process was determined biokinetically. Plant data for the kinetic evaluation of the waste treatment plant was collected before and during treatment. During treatment, the 500 gallon chemostatic growth chamber was operated on an eight hour hydraulic retention time, at a neutral pH, and was fed a mixture of refinery wastewater and simple sugars. The biokinetic constants k (days−1), Ks (mg/L), and K (L/mg-day) were determined before and after treatment by Monod and Lineweaver-Burk plots. Solids discharged and effluent organic concentrations were also evaluated against the mean cell retention time (MCRT). The maximum utilization rate, k, was found to increase from 0.47 to 0.95 days−1 during the operation of the chemostat. Subsequently, Ks increased from 141 to 556 mg/L. Effluent solids were shown to increase slightly with treatment. However, this was acceptable due to the polishing pond and the benefit of increased ability to accept shock loads of oily wastewater. The reason for the increased suspended solids in the effluent was most likely due to the continual addition of bacteria in exponential growth that were capable of responding to excess substrate. The effect of the chemostatic addition of specific microbial inocula to the refinery waste treatment plant has been to improve the overall organic removal capacity along with subsequent gains in plant stability.


1994 ◽  
Vol 29 (8) ◽  
pp. 235-250 ◽  
Author(s):  
Norbert Amsoneit

As a rule, hazardous waste needs a pre-treatment, either a thermal or a chemical-physical one, before it can be disposed of at a landfill. The concentration of different kinds of treatment facilities at a Centralized Hazardous Waste Treatment Plant is advantageous. The facility of the ZVSMM at Schwabach is presented as an outstanding example of this kind of Treatment Centre. The infrastructure, the chemical-physical plant with separate lines for the treatment of organic and inorganic waste and the hazardous waste incinerator are described. Their functions are discussed in detail. Emphasis is laid on handling the residues produced by the different treatment processes and the final disposal.


Sign in / Sign up

Export Citation Format

Share Document