Development of a false alarm free, Advanced Loose Parts Monitoring System (ALPS)

2003 ◽  
Vol 43 (1-4) ◽  
pp. 243-251 ◽  
Author(s):  
G. Por ◽  
J. Kiss ◽  
I. Sorosanszky ◽  
G. Szappanos
2012 ◽  
Vol 19 (4) ◽  
pp. 753-761 ◽  
Author(s):  
Yanlong Cao ◽  
Yuanfeng He ◽  
Huawen Zheng ◽  
Jiangxin Yang

In order to reduce the false alarm rate and missed detection rate of a Loose Parts Monitoring System (LPMS) for Nuclear Power Plants, a new hybrid method combining Linear Predictive Coding (LPC) and Support Vector Machine (SVM) together to discriminate the loose part signal is proposed. The alarm process is divided into two stages. The first stage is to detect the weak burst signal for reducing the missed detection rate. Signal is whitened to improve the SNR, and then the weak burst signal can be detected by checking the short-term Root Mean Square (RMS) of the whitened signal. The second stage is to identify the detected burst signal for reducing the false alarm rate. Taking the signal's LPC coefficients as its characteristics, SVM is then utilized to determine whether the signal is generated by the impact of a loose part. The experiment shows that whitening the signal in the first stage can detect a loose part burst signal even at very low SNR and thusly can significantly reduce the rate of missed detection. In the second alarm stage, the loose parts' burst signal can be distinguished from pulse disturbance by using SVM. Even when the SNR is −15 dB, the system can still achieve a 100% recognition rate


2020 ◽  
Vol 14 (1) ◽  
pp. 113-119
Author(s):  
Zhang Su

Background: In recent years, sudden deaths of primary and secondary school students caused by sports activities have drawn great attention in education and medical circles. It is necessary for schools to monitor the physical condition of the students in order to reasonably set the duration of their physical activity. At present, the physical condition monitoring instruments used in various hospitals are expensive, bulky, and difficult to operate, and the detection process is complicated. Therefore, existing approaches cannot meet the needs of physical education teachers on campus for detecting the physical condition of students. Methods: This study designs a portable human-physiological-state monitoring and analysis system. Real-time communication between a wearable measurement device and a monitoring device can be ensured by real-time detection of the environment and power control of the transmitted signal. Results: From a theoretical point of view, the larger the number of segments M, the more significantly the reduction of false alarm probability. The simulation results also show this fact. Compared with the conventional early warning mechanism, the probability of a false alarm for the proposed system is lower, and the greater the number of segments, the faster its reaction speed. Conclusion: The portable monitoring system of student physical condition for use in physical education of primary and middle school students proposed in this paper ensures real-time monitoring of the members within the system in an open environment, and further proposes an early warning mechanism for combining multiple vital sign parameters. In addition, the proposed system functions faster; the average early warning time required is only one-quarter of that of the conventional system.


2000 ◽  
Vol 36 (2) ◽  
pp. 109-122 ◽  
Author(s):  
Jung-Soo Kim ◽  
Joon Lyou

2014 ◽  
Vol 278 ◽  
pp. 1-6 ◽  
Author(s):  
Moon-Gi Min ◽  
Chang-Gyu Jeong ◽  
Jae-Ki Lee ◽  
Sung-Han Jo ◽  
Hee-Je Kim

Sign in / Sign up

Export Citation Format

Share Document