Narrowing of the Retinal Arterioles in Descending Optic Atrophy

Ophthalmology ◽  
1984 ◽  
Vol 91 (11) ◽  
pp. 1342-1346 ◽  
Author(s):  
Lars Frisén ◽  
Margareta Claesson
2020 ◽  
Vol 84 (1) ◽  
pp. 35-39
Author(s):  
K. Iegorova ◽  
◽  
M. Znamenska ◽  
M. Guk ◽  
A. Mumliev ◽  
...  

2021 ◽  
pp. jmedgenet-2020-107257
Author(s):  
Kun Hu ◽  
Malgorzata Zatyka ◽  
Dewi Astuti ◽  
Nicola Beer ◽  
Renuka P Dias ◽  
...  

BackgroundWolfram syndrome (WFS) is a rare disorder characterised by childhood-onset diabetes mellitus and progressive optic atrophy. Most patients have variants in the WFS1 gene. We undertook functional studies of WFS1 variants and correlated these with WFS1 protein expression and phenotype.Methods9 patients with a clinical diagnosis of WFS were studied with quantitative PCR for markers of endoplasmic reticulum (ER) stress and immunoblotting of fibroblast protein extracts for WFS1 protein expression. Luciferase reporter assay was used to assess ATF-6 dependent unfolded protein response (UPR) activation.Results6 patients with compound heterozygous nonsense mutations in WFS1 had no detectable WFS1 protein expression; 3 patients with missense variants had 4%, 45% and 48% WFS1 protein expression. One of these also had an OPA1 mutation and was reclassified as autosomal dominant optic atrophy-plus syndrome. There were no correlations between ER stress marker mRNA and WFS1 protein expression. ERSE-luciferase reporter indicated activation of the ATF6 branch of UPR in two patients tested. Patients with partial WFS1 expression showed milder visual acuity impairment (asymptomatic or colour blind only), compared with those with absent expression (registered severe vision impaired) (p=0.04). These differences remained after adjusting for duration of optic atrophy.ConclusionsPatients with WFS who have partial WFS1 protein expression present with milder visual impairment. This suggests a protective effect of partial WFS1 protein expression on the severity and perhaps progression of vision impairment and that therapies to increase residual WFS1 protein expression may be beneficial.


2016 ◽  
Vol 3 (6) ◽  
pp. 408-421 ◽  
Author(s):  
Aurélie M. C. Millet ◽  
Ambre M. Bertholet ◽  
Marlène Daloyau ◽  
Pascal Reynier ◽  
Anne Galinier ◽  
...  

1988 ◽  
Vol 149 (2) ◽  
pp. 110-111 ◽  
Author(s):  
Peter J. Goadsby ◽  
Ronald D. Fine
Keyword(s):  

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Weiwei Zou ◽  
Qixin Chen ◽  
Jesse Slone ◽  
Li Yang ◽  
Xiaoting Lou ◽  
...  

AbstractSLC25A46 mutations have been found to lead to mitochondrial hyper-fusion and reduced mitochondrial respiratory function, which results in optic atrophy, cerebellar atrophy, and other clinical symptoms of mitochondrial disease. However, it is generally believed that mitochondrial fusion is attributable to increased mitochondrial oxidative phosphorylation (OXPHOS), which is inconsistent with the decreased OXPHOS of highly-fused mitochondria observed in previous studies. In this paper, we have used the live-cell nanoscope to observe and quantify the structure of mitochondrial cristae, and the behavior of mitochondria and lysosomes in patient-derived SLC25A46 mutant fibroblasts. The results show that the cristae have been markedly damaged in the mutant fibroblasts, but there is no corresponding increase in mitophagy. This study suggests that severely damaged mitochondrial cristae might be the predominant cause of reduced OXPHOS in SLC25A46 mutant fibroblasts. This study demonstrates the utility of nanoscope-based imaging for realizing the sub-mitochondrial morphology, mitophagy and mitochondrial dynamics in living cells, which may be particularly valuable for the quick evaluation of pathogenesis of mitochondrial morphological abnormalities.


Sign in / Sign up

Export Citation Format

Share Document