Canine leptomeningeal organ culture: a new experimental model for cerebrovascular ß-amyloidosis

1996 ◽  
Vol 68 (2) ◽  
pp. 143-148
Author(s):  
R Prior
Author(s):  
C. G. Fink ◽  
G. H. Thomas ◽  
J. M. Allen ◽  
J. A. Jordan

1996 ◽  
Vol 68 (2) ◽  
pp. 143-148
Author(s):  
Reinhard Prior ◽  
Donatella D'Urso ◽  
Rainer Frank ◽  
Ingrid Prikulis ◽  
Günther Wihl ◽  
...  

Author(s):  
Rita Meyer ◽  
Zoltan Posalaky ◽  
Dennis Mcginley

The Sertoli cell tight junctional complexes have been shown to be the most important structural counterpart of the physiological blood-testis barrier. In freeze etch replicas they consist of extensive rows of intramembranous particles which are not only oriented parallel to one another, but to the myoid layer as well. Thus the occluding complex has both an internal and an overall orientation. However, this overall orientation to the myoid layer does not seem to be necessary to its barrier function. The 20 day old rat has extensive parallel tight junctions which are not oriented with respect to the myoid layer, and yet they are inpenetrable by lanthanum. The mechanism(s) for the control of Sertoli cell junction development and orientation has not been established, although such factors as the presence or absence of germ cells, and/or hormones, especially FSH have been implicated.


Author(s):  
Waykin Nopanitaya ◽  
Raeford E. Brown ◽  
Joe W. Grisham ◽  
Johnny L. Carson

Mammalian endothelial cells lining hepatic sinusoids have been found to be widely fenestrated. Previous SEM studies (1,2) have noted two general size catagories of fenestrations; large fenestrae were distributed randomly while the small type occurred in groups. These investigations also reported that large fenestrae were more numerous and larger in the endothelial cells at the afferent ends of sinusoids or around the portal areas, whereas small fenestrae were more numerous around the centrilobular portion of the hepatic lobule. It has been further suggested that under some physiologic conditions small fenestrae could fuse and subsequently become the large type, but this is, as yet, unproven.We have used a reproducible experimental model of hypoxia to study the ultrastructural alterations in sinusoidal endothelial fenestrations in order to investigate the origin of occurrence of large fenestrae.


2003 ◽  
Vol 2 (1) ◽  
pp. 33-34
Author(s):  
B SHIVALKAR ◽  
B MEURIS ◽  
R VANBENEDEN ◽  
J KETESLEGERS ◽  
F BECKERS ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document