P.12.8 EVALUATION OF PROBIOTIC BACTERIA ADHESION TO NORMAL AND DYSPLASTIC COLONIC MUCOSA BY AN EX-VIVO ORGAN CULTURE EXPERIMENTAL MODEL

2013 ◽  
Vol 45 ◽  
pp. S175
Author(s):  
C. Pagnini ◽  
G. Rizzatti ◽  
V. Corleto ◽  
S. Angeletti ◽  
E. Di Giulio ◽  
...  
2017 ◽  
Vol 54 (2) ◽  
pp. 130-134 ◽  
Author(s):  
Ricardo Luís Lopes BRAGA ◽  
Ana Claudia Machado PEREIRA ◽  
Paula Azevedo dos SANTOS ◽  
Angela Corrêa FREITAS-ALMEIDA ◽  
Ana Cláudia de Paula ROSA

ABSTRACT BACKGROUND The diarrheal syndrome is considered a serious public health problem all over the world and is considered a major cause of morbidity and mortality in developing countries. The high incidence of enteroaggregative Escherichia coli in diarrheal syndromes classified as an emerging pathogen of gastrointestinal infections. After decades of study, your pathogenesis remains uncertain and has been investigated mainly using in vitro models of adhesion in cellular lines. OBJECTIVE The present study investigated the interaction of enteroaggregative Escherichia coli strains isolated from childhood diarrhea with rabbit ileal and colonic mucosa ex vivo, using the in vitro organ culture model. METHODS The in vitro adhesion assays using cultured tissue were performed with the strains co-incubated with intestinal fragments of ileum and colon over a period of 6 hours. Each strain was tested with three intestinal fragments for each region. The fragments were analysed by scanning electron microscopy. RESULTS Through scanning electron microscopy we observed that all strains adhered to rabbit ileal and colonic mucosa, with the typical aggregative adherence pattern of “stacked bricks” on the epithelium. However, the highest degree of adherence was observed on colonic mucosa. Threadlike structures were found in greater numbers in the ileum compared to the colon. CONCLUSION These data showed that enteroaggregative Escherichia coli may have a high tropism for the human colon, which was ratified by the higher degree of adherence on the rabbit colonic mucosa. Finally, data indicated that in vitro organ culture of intestinal mucosa from rabbit may be used to elucidate the enteroaggregative Escherichia coli pathogenesis.


2000 ◽  
Author(s):  
Shawn Chin Quee ◽  
Hai-Chao Han ◽  
David N. Ku

Abstract Standard tests are needed for evaluating and comparing the mechanical and biological functions of tissue engineered arteries and other vascular grafts. We propose an ex vivo organ culture system as a living system for testing tissue-engineered vascular grafts. This bench-top organ culture system mimics the physiological environment of arteries including the flow, pressure, and the axial stretch. Arterial mechanical properties and physiologic functions including compliance, burst pressure, and contractile functions can be assessed before an expensive long-term animal test is initiated. Test results of natural arteries indicate that organ culture is a valid model for comprehensive evaluation of tissue-engineered vascular grafts.


2000 ◽  
Author(s):  
Hai-Chao Han ◽  
Raymond P. Vito ◽  
Kristin Michael ◽  
David N. Ku

Abstract To study the effect of axial stretch on vascular function and wall remodeling, porcine carotid arteries were cultured under conditions of physiological flow and elevated axial stretch in an ex vivo organ culture system. Smooth muscle cell proliferation was measured by bromodeoxyuridine index. Results showed that cell proliferation was significantly increased in the highly stretched arteries when compared to the normally stretched arteries. This may indicate the feasibility of stimulating new arterial growth by stretching natural arteries.


2012 ◽  
Vol 32 (suppl_1) ◽  
Author(s):  
Martin Rouer ◽  
Martin Rouer ◽  
Jean-Marc Alsac ◽  
Jean-Baptiste Michel

Introduction Biological study of the impact of endovascular aortic repair (EVAR) on pathophysiology of aortic abdominal aneurysms (AAA) can only be performed indirectly in humans, by imaging or search for peripheral biomarkers in the circulating blood. Therefore biological mechanism’s modifications into the aneurismal wall related to its endovascular exclusion are still to be elucidated, and small animal models should bring a valuable help in this field. We describe a new experimental model of stentgraft implantation for the exclusion of AAA in rats. Methods Aneurysms were induced as previously described by intra-aortic elastase injection in Wistar rats, or by aortic decellularized xenograft transplantation in Lewis rats. At least 15 days later, the midline laparotomy was reopened, and 3mm covered stentgraft were inserted and deployed in the AAA to obtain its exclusion. The patency of the graft and the AAA exclusion could be assessed by a global arteriogram through the carotid artery. After closure of the laparotomy, the rats were awakened and returned to a normal diet. Results This experimental model of AAA exclusion by a stentgraft allows many in vivo and ex vivo studies of the pathophysiology of AAA after EVAR. Histological modifications of the aortic wall and the intra-luminal thrombus could be assessed. The impact of EVAR on the adventitial immuno-inflammatory activity could be studied by different imaging such as MRI, scintigraphy or PET-scan. In situ biological and enzymatic activities could be evaluated to better understand the local mechanisms leading to AAA shrinkage or expansion after EVAR. Conclusion Exclusion by stentgraft of experimental AAA in rats is the first described model of EVAR in small animals. It is feasible and reproducible for both elastase and xenograft experimental AAA models. This model will definitely help to a better analysis and understanding of the impact of stentgrafting on biological mechanisms in the aneurismal wall, that lead to EVAR success with shrinkage of aneurismal sac or EVAR failure with its continuing expansion.


Sign in / Sign up

Export Citation Format

Share Document