HIV-1 gp120 induces CD4 association with several molecules on the T cell surface and modulates T cell interaction with endothelium and homing

1997 ◽  
Vol 56 (1-3) ◽  
pp. 29
Author(s):  
M Bragardo
Keyword(s):  
T Cell ◽  
1997 ◽  
Vol 56 ◽  
pp. 29
Author(s):  
M. Bragardo ◽  
D. Buonfiglio ◽  
M.J. Feito ◽  
V. Redoglia ◽  
G. Garbarino ◽  
...  
Keyword(s):  
T Cell ◽  

2003 ◽  
Vol 34 (1) ◽  
pp. 114-116 ◽  
Author(s):  
Jacques Reynes ◽  
Vincent Baillat ◽  
Pierre Portales ◽  
Jacques Clot ◽  
Pierre Corbeau
Keyword(s):  
T Cell ◽  

1993 ◽  
Vol 9 (2) ◽  
pp. 167-174 ◽  
Author(s):  
MAHESH PATEL ◽  
MASAKI YANAGISHITA ◽  
GREGORY RODERIQUEZ ◽  
DUMITH CHEQUER BOU-HABIB ◽  
TAMAS ORAVECZ ◽  
...  

2019 ◽  
Vol 93 (24) ◽  
Author(s):  
Vânia Passos ◽  
Thomas Zillinger ◽  
Nicoletta Casartelli ◽  
Amelie S. Wachs ◽  
Shuting Xu ◽  
...  

ABSTRACT When expressed in virus-producing cells, the cellular multipass transmembrane protein SERINC5 reduces the infectivity of HIV-1 particles and is counteracted by HIV-1 Nef. Due to the unavailability of an antibody of sufficient specificity and sensitivity, investigation of SERINC5 protein expression and subcellular localization has been limited to heterologously expressed SERINC5. We generated, via CRISPR/Cas9-assisted gene editing, Jurkat T-cell clones expressing endogenous SERINC5 bearing an extracellularly exposed hemagglutinin (HA) epitope [Jurkat SERINC5(iHA knock-in) T cells]. This modification enabled quantification of endogenous SERINC5 protein levels and demonstrated a predominant localization in lipid rafts. Interferon alpha (IFN-α) treatment enhanced cell surface levels of SERINC5 in a ruxolitinib-sensitive manner in the absence of modulation of mRNA and protein quantities. Parental and SERINC5(iHA knock-in) T cells shared the ability to produce infectious wild-type HIV-1 but not an HIV-1 Δnef mutant. SERINC5-imposed reduction of infectivity involved a modest reduction of virus fusogenicity. An association of endogenous SERINC5 protein with HIV-1 Δnef virions was consistently detectable as a 35-kDa species, as opposed to heterologous SERINC5, which presented as a 51-kDa species. Nef-mediated functional counteraction did not correlate with virion exclusion of SERINC5, arguing for the existence of additional counteractive mechanisms of Nef that act on virus-associated SERINC5. In HIV-1-infected cells, Nef triggered the internalization of SERINC5 in the absence of detectable changes of steady-state protein levels. These findings establish new properties of endogenous SERINC5 expression and subcellular localization, challenge existing concepts of HIV-1 Nef-mediated antagonism of SERINC5, and uncover an unprecedented role of IFN-α in modulating SERINC5 through accumulation at the cell surface. IMPORTANCE SERINC5 is the long-searched-for antiviral factor that is counteracted by the HIV-1 accessory gene product Nef. Here, we engineered, via CRISPR/Cas9 technology, T-cell lines that express endogenous SERINC5 alleles tagged with a knocked-in HA epitope. This genetic modification enabled us to study basic properties of endogenous SERINC5 and to verify proposed mechanisms of HIV-1 Nef-mediated counteraction of SERINC5. Using this unique resource, we identified the susceptibility of endogenous SERINC5 protein to posttranslational modulation by type I IFNs and suggest uncoupling of Nef-mediated functional antagonism from SERINC5 exclusion from virions.


AIDS ◽  
1993 ◽  
Vol 7 (5) ◽  
pp. 647-654 ◽  
Author(s):  
Thomas Schneider ◽  
Andreas Beck ◽  
Claudia Röpke ◽  
Reiner Ullrich ◽  
Hans-Peter Harthus ◽  
...  

1999 ◽  
Vol 73 (4) ◽  
pp. 3449-3454 ◽  
Author(s):  
Ines Frank ◽  
Laco Kacani ◽  
Heribert Stoiber ◽  
Hella Stössel ◽  
Martin Spruth ◽  
...  

ABSTRACT During the budding process, human immunodeficiency virus type 1 (HIV-1) acquires cell surface molecules; thus, the viral surface of HIV-1 reflects the antigenic pattern of the host cell. To determine the source of HIV-1 released from cocultures of dendritic cells (DC) with T cells, immature DC (imDC), mature DC (mDC), T cells, and their cocultures were infected with different HIV-1 isolates. The macrophage-tropic HIV-1 isolate Ba-L allowed viral replication in both imDC and mDC, whereas the T-cell-line-tropic primary isolate PI21 replicated in mDC only. By a virus capture assay, HIV-1 was shown to carry a T-cell- or DC-specific cell surface pattern after production by T cells or DC, respectively. Upon cocultivation of HIV-1-pulsed DC with T cells, HIV-1 exclusively displayed a typical T-cell pattern. Additionally, functional analysis revealed that HIV-1 released from imDC–T-cell cocultures was more infectious than HIV-1 derived from mDC–T-cell cocultures and from cultures of DC, T cells, or peripheral blood mononuclear cells alone. Therefore, we conclude that the interaction of HIV-1-pulsed imDC with T cells in vivo might generate highly infectious virus which primarily originates from T cells.


2009 ◽  
Vol 106 (49) ◽  
pp. 20877-20882 ◽  
Author(s):  
C. Cicala ◽  
E. Martinelli ◽  
J. P. McNally ◽  
D. J. Goode ◽  
R. Gopaul ◽  
...  
Keyword(s):  
T Cell ◽  

2021 ◽  
Author(s):  
Mitchell J. Mumby ◽  
Aaron L. Johnson ◽  
Steven M. Trothen ◽  
Cassandra R. Edgar ◽  
Richard Gibson ◽  
...  

Serine Incorporator 5 (SERINC5) reduces the infectivity of progeny HIV-1 virions by incorporating into the outer host-derived viral membrane during egress. To counter SERINC5, the HIV-1 accessory protein Nef triggers SERINC5 internalization by engaging the Adaptor Protein 2 (AP-2) complex using the [D/E]xxxL[L/I] 167 Nef dileucine motif. Nef also engages AP-2 via its dileucine motif to downregulate the CD4 receptor. Although these two Nef functions are related, the mechanisms governing SERINC5 downregulation are incompletely understood. Here, we demonstrate that two primary Nef isolates, referred to as 2410 and 2391 Nef, acquired from acutely HIV-1 infected women from Zimbabwe, both downregulate CD4 from the cell surface. However, only 2410 Nef retains the ability to downregulate cell surface SERINC5. Using a series of Nef chimeras, we mapped the region of 2391 Nef responsible for the functional uncoupling of these two antagonistic pathways to the dileucine motif. Modifications of the first and second ‘x’ positions of the 2410 Nef dileucine motif to asparagine and aspartic acid residues respectively (ND 164 ), impaired cell surface SERINC5 downregulation, which resulted in reduced infectious virus yield in the presence of SERINC5. The ND 164 mutation additionally partially impaired, but did not completely abrogate, Nef-mediated cell surface CD4 downregulation. Furthermore, the patient infected with HIV-1 encoding 2391 Nef had stable CD4 + T cell counts, whereas infection with HIV-1 encoding 2410 Nef resulted in CD4 + T cell decline and disease progression. Importance A contributing factor to HIV-1 persistence is evasion of the host immune response. HIV-1 uses the Nef accessory protein to evade the anti-viral roles of the adaptive and intrinsic innate immune responses. Nef targets SERINC5, a restriction factor which potently impairs HIV-1 infection by triggering SERINC5 removal from the cell surface. The molecular determinants underlying this Nef function remain incompletely understood. Recent studies have found a correlation between the extent of Nef-mediated SERINC5 downregulation and the rate of disease progression. Furthermore, single residue polymorphisms outside of the known Nef functional motifs can modulate SERINC5 downregulation. The identification of a naturally occurring Nef polymorphism impairing SERINC5 downregulation in this study supports a link between Nef downregulation of SERINC5 and the rate of plasma CD4 + T cell decline. Moreover, the observed functional impairments of this polymorphism could provide clues to further elucidate unknown aspects of the SERINC5 antagonistic pathway via Nef.


1990 ◽  
Vol 97 (2) ◽  
pp. 335-347
Author(s):  
P. Andre ◽  
A.M. Benoliel ◽  
C. Capo ◽  
C. Foa ◽  
M. Buferne ◽  
...  

In many models of cell-cell adhesion, it was reported that some cell membrane molecules might be redistributed into contact areas. However, this phenomenon was not subjected to precise quantification. In the present work, fluorescence microscopy, immunolabelling and digital image processing were combined to analyse quantitatively the spatial organization of specific or nonspecific conjugates made with a cytolytic T (CTL) lymphocyte clone (BM3.3) and target cells (EL4 or RDM4). Binding was achieved under calcium-free conditions to study the earliest steps of cell interaction, preceding CTL activation. Fluorescent antibodies were used to label class I histocompatibility molecules on both killer and target cells, and T cell receptor, CD3, CD8 and LFA-1 (CD18/CD11a) on the killer cells. Membrane bilayers were stained with a fluorescent phospholipid, glycoconjugates were labelled with periodic oxidation and Lucifer Yellow uptake, and polymerized actin was revealed with a fluorescent phallacidin derivative. Also, the fine geometry of killer-target interaction area was studied with electron microscopy and computer-assisted contour analysis. It is concluded that: (1) qualitative examination of fluorescence photomicrographs cannot permit accurate comparison between different fluorescence densities. (2) The cell-cell contact area was about fourfold higher in specific conjugates than in non-specific ones. (3) The surface density of adhesion molecules exhibited similar increases (between 30 and 80%) in the contact areas of both specific and nonspecific conjugates. (4) However, the amount of redistributed surface molecules was higher when cell-cell interaction was enhanced either by specific immunological recognition (in specific conjugates) or periodate oxidation. (5) Since redistribution did not require extracellular calcium and it was detected on nonspecific conjugates, this did not require full lymphocyte activation. Spatial reorganization of cell surface molecules may thus be a general consequence of adhesion, cell surface mobility and intermolecular forces.


AIDS ◽  
2001 ◽  
Vol 15 (13) ◽  
pp. 1627-1634 ◽  
Author(s):  
Jacques Reynes ◽  
Pierre Portales ◽  
Michel Segondy ◽  
Vincent Baillat ◽  
Pascal André ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document