Targeted expression of an oncogenic adaptor protein v-Crk potentiates axonal growth in dorsal root ganglia and motor neurons in vivo

1999 ◽  
Vol 116 (1) ◽  
pp. 29-39 ◽  
Author(s):  
David E Weinstein ◽  
Kostantin Dobrenis ◽  
Raymond B Birge
eLife ◽  
2013 ◽  
Vol 2 ◽  
Author(s):  
Zhong L Hua ◽  
Philip M Smallwood ◽  
Jeremy Nathans

Disruption of the Frizzled3 (Fz3) gene leads to defects in axonal growth in the VIIth and XIIth cranial motor nerves, the phrenic nerve, and the dorsal motor nerve in fore- and hindlimbs. In Fz3−/− limbs, dorsal axons stall at a precise location in the nerve plexus, and, in contrast to the phenotypes of several other axon path-finding mutants, Fz3−/− dorsal axons do not reroute to other trajectories. Affected motor neurons undergo cell death 2 days prior to the normal wave of developmental cell death that coincides with innervation of muscle targets, providing in vivo evidence for the idea that developing neurons with long-range axons are programmed to die unless their axons arrive at intermediate targets on schedule. These experiments implicate planar cell polarity (PCP) signaling in motor axon growth and they highlight the question of how PCP proteins, which form cell–cell complexes in epithelia, function in the dynamic context of axonal growth.


Pain ◽  
2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Zhiyong Chen ◽  
Qian Huang ◽  
Xiaodan Song ◽  
Neil C. Ford ◽  
Chi Zhang ◽  
...  

Neuroscience ◽  
2008 ◽  
Vol 153 (4) ◽  
pp. 1153-1163 ◽  
Author(s):  
M. Fornaro ◽  
J.M. Lee ◽  
S. Raimondo ◽  
S. Nicolino ◽  
S. Geuna ◽  
...  

PLoS ONE ◽  
2017 ◽  
Vol 12 (8) ◽  
pp. e0183845 ◽  
Author(s):  
Leonidas Apostolidis ◽  
Daniel Schwarz ◽  
Annie Xia ◽  
Markus Weiler ◽  
Andreas Heckel ◽  
...  

2000 ◽  
Vol 74 (8) ◽  
pp. 3613-3622 ◽  
Author(s):  
Herve Berthomme ◽  
James Lokensgard ◽  
Li Yang ◽  
Todd Margolis ◽  
Lawrence T. Feldman

ABSTRACT Herpes simplex virus type 1 (HSV-1) latent infection in vivo is characterized by the constitutive expression of the latency-associated transcripts (LAT), which originate from the LAT promoter (LAP). In an attempt to determine the functional parts of LAP, we previously demonstrated that viruses harboring a DNA fragment 3′ of the LAT promoter itself were able to maintain detectable promoter expression throughout latency whereas viruses not containing this element could not (J. R. Lokensgard, H. Berthomme, and L. T. Feldman, J. Virol. 71:6714–6719, 1997). This element was therefore called a long-term expression element (LTE). To further study the role of the LTE, we constructed plasmids containing a DNA fragment encompassing the LTE inserted into a synthetic intron between the reporterlacZ gene and either the LAT or the HSV-1 thymidine kinase promoter. Transient-expression experiments with both neuronal and nonneuronal cell lines showed that the LTE locus has an enhancer activity that does not activate the cytomegalovirus enhancer but does activate the promoters such as the LAT promoter and the thymidine kinase promoter. The enhancement of these two promoters occurs in both neuronal and nonneuronal cell lines. Recombinant viruses containing enhancer constructs were constructed, and these demonstrated that the enhancer functioned when present in the context of the viral DNA, both for in vitro infections of cells in culture and for in vivo infections of neurons in mouse dorsal root ganglia. In the infections of mouse dorsal root ganglia, there was a very high level of promoter activity in neurons infected with viruses bearing the LAT promoter-enhancer, but this decreased after the first 2 or 3 weeks. By 18 days postinfection, neurons harboring latent virus without the enhancer showed no β-galactosidase (β-gal) staining whereas those harboring latent virus containing the enhancer continued to show β-gal staining for long periods, extending to at least 6 months postinfection, the longest time examined.


1967 ◽  
Vol 32 (2) ◽  
pp. 439-466 ◽  
Author(s):  
Mary Bartlett Bunge ◽  
Richard P. Bunge ◽  
Edith R. Peterson ◽  
Margaret R. Murray

Dorsal root ganglia from fetal rats were explanted on collagen-coated coverslips and carried in Maximow double-coverslip assemblies for periods up to 3 months. These cultured ganglia were studied in the living state, in stained whole mounts, and in sections after OsO4 fixation and Epon embedment. From the central cluster of nerve cell bodies, neurites emerge to form a rich network of fascicles which often reach the edge of the carrying coverslip. The neurons resemble their in vivo counterparts in nuclear and cytoplasmic content and organization; e.g., they appear as "light" or "dark" cells, depending on the amount of cytoplasmic neurofilaments. Satellite cells form a complete investment around the neuronal soma and are themselves everywhere covered by basement membrane. The neuron-satellite cell boundary is complicated by spinelike processes arising from the neuronal soma. Neuron size, myelinated fiber diameter, and internode length in the cultures do not reach the larger of the values known for ganglion and peripheral nerve in situ (30). Unmyelinated and myelinated nerve fibers and associated Schwann cells and endoneurial and perineurial components are organized into typical fascicles. The relationship of the Schwann cell and its single myelinated fiber or numerous unmyelinated fibers and the properties of myelin, such as lamellar spacing, mesaxons, Schmidt-Lanterman clefts, nodes of Ranvier, and protuberances, mimic the in vivo pattern. It is concluded that cultivation of fetal rat dorsal root ganglia by this technique fosters maturation and long-term maintenance of all the elements that comprise this cellular community in vivo (except vascular components) and, furthermore, allows these various components to relate faithfully to one another to produce an organotypic model of sensory ganglion tissue.


1990 ◽  
Vol 26 (1) ◽  
pp. 83-89 ◽  
Author(s):  
C. Sadzot-Delvaux ◽  
M. P. Merville-Louis ◽  
P. Delree ◽  
P. Marc ◽  
J. Piette ◽  
...  

2021 ◽  
Vol 16 (11) ◽  
pp. 989-1003
Author(s):  
Lucas Degrugillier ◽  
Katharina M Prautsch ◽  
Dirk J Schaefer ◽  
Raphael Guzman ◽  
Daniel F Kalbermatten ◽  
...  

Aim: To compare therapeutic benefits of different immunophilin ligands for treating nerve injuries. Materials & methods: Cyclosporine, FK506 and rapamycin, were evaluated first in vitro on a serum-free culture of embryonic dorsal root ganglia followed by a new in vivo model of chronic nerve compression. Results: Outcomes of the in vitro study have shown a potent effect of cyclosporine and FK506, on dorsal root ganglia axonal outgrowth, comparable to the effect of nerve growth factor. Rapamycin exhibited only a moderate effect. The in vivo study revealed the beneficial effects of cyclosporine, FK506 and rapamycin for neuromuscular regeneration. Cyclosporine showed the better maintenance of the tissues and function. Conclusion: Cyclosporine, FK506 and rapamycin drugs showed potential for treating peripheral nerve chronic compression injuries.


Sign in / Sign up

Export Citation Format

Share Document