Regional and temporal expression patterns of interleukin-10, interleukin-10 receptor and adhesion molecules in the rat spinal cord during chronic relapsing EAE

2003 ◽  
Vol 136 (1-2) ◽  
pp. 94-103 ◽  
Author(s):  
Annemarie Ledeboer ◽  
Anne Wierinckx ◽  
John G.J.M Bol ◽  
Sarah Floris ◽  
Chantal Renardel de Lavalette ◽  
...  
Neuroscience ◽  
2012 ◽  
Vol 207 ◽  
pp. 12-24 ◽  
Author(s):  
E.L. Werry ◽  
G.J. Liu ◽  
M.D. Lovelace ◽  
R. Nagarajah ◽  
M.R. Bennett

Cells ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 826 ◽  
Author(s):  
Anthony J. Hayes ◽  
James Melrose

This study has identified keratan sulfate in fetal and adult rat spinal cord and vertebral connective tissues using the antibody BKS-1(+) which recognizes a reducing terminal N-acetyl glucosamine-6-sulfate neo-epitope exposed by keratanase-I digestion. Labeling patterns were correlated with those of lumican and keratocan using core protein antibodies to these small leucine rich proteoglycan species. BKS-1(+) was not immunolocalized in fetal spinal cord but was apparent in adult cord and was also prominently immunolocalized to the nucleus pulposus and inner annulus fibrosus of the intervertebral disc. Interestingly, BKS-1(+) was also strongly associated with vertebral body ossification centers of the fetal spine. Immunolocalization of lumican and keratocan was faint within the vertebral body rudiments of the fetus and did not correlate with the BKS-1(+) localization indicating that this reactivity was due to another KS-proteoglycan, possibly osteoadherin (osteomodulin) which has known roles in endochondral ossification. Western blotting of adult rat spinal cord and intervertebral discs to identify proteoglycan core protein species decorated with the BKS-1(+) motif confirmed the identity of 37 and 51 kDa BKS-1(+) positive core protein species. Lumican and keratocan contain low sulfation KS-I glycoforms which have neuroregulatory and matrix organizational properties through their growth factor and morphogen interactive profiles and ability to influence neural cell migration. Furthermore, KS has interactive capability with a diverse range of neuroregulatory proteins that promote neural proliferation and direct neural pathway development, illustrating key roles for keratocan and lumican in spinal cord development.


2005 ◽  
Vol 489 (1) ◽  
pp. 1-10 ◽  
Author(s):  
I-Hui Lee ◽  
Eva Lindqvist ◽  
Ole Kiehn ◽  
Johan Widenfalk ◽  
Lars Olson

Author(s):  
V. Kriho ◽  
H.-Y. Yang ◽  
C.-M. Lue ◽  
N. Lieska ◽  
G. D. Pappas

Radial glia have been classically defined as those early glial cells that radially span their thin processes from the ventricular to the pial surfaces in the developing central nervous system. These radial glia constitute a transient cell population, disappearing, for the most part, by the end of the period of neuronal migration. Traditionally, it has been difficult to definitively identify these cells because the principal criteria available were morphologic only.Using immunofluorescence microscopy, we have previously defined a phenotype for radial glia in rat spinal cord based upon the sequential expression of vimentin, glial fibrillary acidic protein and an intermediate filament-associated protein, IFAP-70/280kD. We report here the application of another intermediate filament-associated protein, IFAP-300kD, originally identified in BHK-21 cells, to the immunofluorescence study of radial glia in the developing rat spinal cord.Results showed that IFAP-300kD appeared very early in rat spinal cord development. In fact by embryonic day 13, IFAP-300kD immunoreactivity was already at its peak and was observed in most of the radial glia which span the spinal cord from the ventricular to the subpial surfaces (Fig. 1). Interestingly, from this time, IFAP-300kD immunoreactivity diminished rapidly in a dorsal to ventral manner, so that by embryonic day 16 it was detectable only in the maturing macroglial cells in the marginal zone of the spinal cord and the dorsal median septum (Fig. 2). By birth, the spinal cord was essentially immuno-negative for this IFAP. Thus, IFAP-300kD appears to be another differentiation marker available for future studies of gliogenesis, especially for the early stages of radial glia differentiation.


Sign in / Sign up

Export Citation Format

Share Document