Recombinant antibody Fab against the hypervariable region 1 of hepatitis C virus blocks the virus adsorption to susceptible cells in vitro

2002 ◽  
Vol 56 (1) ◽  
pp. 51-59 ◽  
Author(s):  
Yi-Hua Zhou ◽  
Masataka Takekoshi ◽  
Fumiko Maeda ◽  
Seiji Ihara ◽  
Mariko Esumi
2021 ◽  
Vol 17 (7) ◽  
pp. e1009720
Author(s):  
Christina Holmboe Olesen ◽  
Elias H. Augestad ◽  
Fulvia Troise ◽  
Jens Bukh ◽  
Jannick Prentoe

Hepatitis C virus (HCV) chronically infects 70 million people worldwide with an estimated annual disease-related mortality of 400,000. A vaccine could prevent spread of this pervasive human pathogen, but has proven difficult to develop, partly due to neutralizing antibody evasion mechanisms that are inherent features of the virus envelope glycoproteins, E1 and E2. A central actor is the E2 motif, hypervariable region 1 (HVR1), which protects several non-overlapping neutralization epitopes through an incompletely understood mechanism. Here, we show that introducing different HVR1-isolate sequences into cell-culture infectious JFH1-based H77 (genotype 1a) and J4 (genotype 1b) Core-NS2 recombinants can lead to severe viral attenuation. Culture adaptation of attenuated HVR1-swapped recombinants permitted us to identify E1/E2 substitutions at conserved positions both within and outside HVR1 that increased the infectivity of attenuated HVR1-swapped recombinants but were not adaptive for original recombinants. H77 recombinants with HVR1 from multiple other isolates consistently acquired substitutions at position 348 in E1 and position 385 in HVR1 of E2. Interestingly, HVR1-swapped J4 recombinants primarily acquired other substitutions: F291I (E1), F438V (E2), F447L/V/I (E2) and V710L (E2), indicating a different adaptation pathway. For H77 recombinants, the adaptive E1/E2 substitutions increased sensitivity to the neutralizing monoclonal antibodies AR3A and AR4A, whereas for J4 recombinants, they increased sensitivity to AR3A, while having no effect on sensitivity to AR4A. To evaluate effects of the substitutions on AR3A and AR4A binding, we performed ELISAs on extracted E1/E2 protein and performed immunoprecipitation of relevant viruses. However, extracted E1/E2 protein and immunoprecipitation of HCV particles only reproduced the neutralization phenotypes of the J4 recombinants. Finally, we found that the HVR1-swap E1/E2 substitutions decrease virus entry dependency on co-receptor SR-BI. Our study identifies E1/E2 positions that could be critical for intra-complex HVR1 interactions while emphasizing the need for developing novel tools for molecular studies of E1/E2 interactions.


2007 ◽  
Vol 88 (3) ◽  
pp. 895-902 ◽  
Author(s):  
G. Haqshenas ◽  
X. Dong ◽  
H. Netter ◽  
J. Torresi ◽  
E. J. Gowans

Two GB virus B (GBV-B) chimeric genomes, GBV-HVR and GBV-HVRh (with a hinge), containing the coding region of the immunodominant hypervariable region 1 (HVR1) of the E2 envelope protein of Hepatitis C virus (HCV) were constructed. Immunoblot analysis confirmed that HVR1 was anchored to the GBV-B E2 protein. To investigate the replication competence and in vivo stability of in vitro-generated chimeric RNA transcripts, two naïve marmosets were inoculated intrahepatically with the transcripts. The GBV-HVR chimeric genome was detectable for 2 weeks post-inoculation (p.i.), whereas GBV-HVRh reverted to wild type 1 week p.i. Sequencing analysis of the HVR1 and flanking regions from GBV-HVR RNA isolated from marmoset serum demonstrated that the HVR1 insert remained unaltered in the GBV-HVR chimera for 2 weeks. Inoculation of a naïve marmoset with serum collected at 1 week p.i. also resulted in viraemia and confirmed that the serum contained infectious particles. All animals cleared the infection by 3 weeks p.i. and remained negative for the remaining weeks. The chimera may prove useful for the in vivo examination of any HCV HVR1-based vaccine candidates.


1999 ◽  
Vol 73 (9) ◽  
pp. 7497-7504 ◽  
Author(s):  
A. Fournillier ◽  
E. Depla ◽  
P. Karayiannis ◽  
O. Vidalin ◽  
G. Maertens ◽  
...  

ABSTRACT Interactive glycoproteins present on the surface of viral particles represent the main target of neutralizing antibodies. The ability of DNA vaccination to induce antibodies directed at such structures was investigated by using eight different expression plasmids engineered either to favor or to prevent interaction between the hepatitis C virus (HCV) envelope glycoproteins E1 and E2. Independently of the injection route (intramuscular or intraepidermal), plasmids expressing antigens capable of forming heterodimers presumed to be the prebudding form of the HCV envelope protein complex failed to induce any significant, stable antibodies following injection in mice. In sharp contrast, high titers of antibodies directed at both conformational and linear determinants were induced by using plasmids expressing severely truncated antigens that have lost the ability to form native complexes. In addition, only a truncated form of E2 induced antibodies reacting against the hypervariable region 1 of E2 (specifically with the C-terminal part of it) known to contain a neutralization site. When injected intraepidermally into small primates, the truncated E2-encoding plasmid induced antibodies able to neutralize in vitro the binding of a purified E2 protein onto susceptible cells. Because such antibodies have been associated with viral clearance in both humans and chimpanzees, these findings may have important implications for the development of protective immunity against HCV.


2005 ◽  
Vol 78 (2) ◽  
pp. 372-382 ◽  
Author(s):  
Cristiano Scottà ◽  
Loretta Tuosto ◽  
Anna Maria Masci ◽  
Luigi Racioppi ◽  
Enza Piccolella ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Kamila Caraballo Cortés ◽  
Osvaldo Zagordi ◽  
Tomasz Laskus ◽  
Rafał Płoski ◽  
Iwona Bukowska-Ośko ◽  
...  

Genetic variability of hepatitis C virus (HCV) determines pathogenesis of infection, including viral persistence and resistance to treatment. The aim of the present study was to characterize HCV genetic heterogeneity within a hypervariable region 1 (HVR1) of a chronically infected patient by ultradeep 454 sequencing strategy. Three independent sequencing error correction methods were applied. First correction method (Method I) implemented cut-off for genetic variants present in less than 1%. In the second method (Method II), a condition to call a variant was bidirectional coverage of sequencing reads. Third method (Method III) usedShort Read Assembly into Haplotypes(ShoRAH) program. After the application of these three different algorithms, HVR1 population consisted of 8, 40, and 186 genetic haplotypes. The most sensitive method was ShoRAH, allowing to reconstruct haplotypes constituting as little as 0.013% of the population. The most abundant genetic variant constituted only 10.5%. Seventeen haplotypes were present in a frequency above 1%, and there was wide dispersion of the population into very sparse haplotypes. Our results indicate that HCV HVR1 heterogeneity andquasispeciespopulation structure may be reconstructed by ultradeep sequencing. However, credible analysis requires proper reconstruction methods, which would distinguish sequencing error from real variabilityin vivo.


Sign in / Sign up

Export Citation Format

Share Document