Organo-functionalized surface modified MCM-41 type mesoporous materials having various organic functional groups

Author(s):  
Priyabrata Mukherjee ◽  
Subhash Laha ◽  
Deendayal Mandai ◽  
Rajiv Kumar
2021 ◽  
Vol 504 ◽  
pp. 111419
Author(s):  
Jiarong Li ◽  
Zhe Liu ◽  
Guangfa Hu ◽  
Ruimin Gao ◽  
Ronglan Zhang ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4196
Author(s):  
Ji Hyeon Lee ◽  
Hyun Wook Jung ◽  
In Soo Kim ◽  
Min Park ◽  
Hyung-Seok Kim

In this study, carbon nanotubes (CNTs) were used as cathodes for lithium–oxygen (Li–O2) batteries to confirm the effect of oxygen functional groups present on the CNT surface on Li–O2 battery performance. A coating technology using atomic layer deposition was introduced to remove the oxygen functional groups present on the CNT surface, and ZnO without catalytic properties was adopted as a coating material to exclude the effect of catalytic reaction. An acid treatment process (H2SO4:HNO3 = 3:1) was conducted to increase the oxygen functional groups of the existing CNTs. Therefore, it was confirmed that ZnO@CNT with reduced oxygen functional groups lowered the charging overpotential by approximately 230 mV and increased the yield of Li2O2, a discharge product, by approximately 13%. Hence, we can conclude that the ZnO@CNT is suitable as a cathode material for Li–O2 batteries.


2011 ◽  
Vol 89 (3) ◽  
pp. 257-265 ◽  
Author(s):  
Ranjit T. Koodali

A review of photoinduced charge separation of organic molecules in microporous and mesoporous materials is presented. In particular, the photoionization of N-alkylphenothiazine (PCn), N,N,N′,N′-tetramethylbenzidine (TMB), and porphyrin in microporous materials, such as zeolites, aluminophosphates (AlPOs), silicoaluminophosphates (SAPOs), and mesoporous materials, such as MCM-41, MCM-48, and SBA-15, is discussed.


2017 ◽  
Vol 10 ◽  
pp. S2160-S2169 ◽  
Author(s):  
Bouhadjar Boukoussa ◽  
Rachida Hamacha ◽  
Amine Morsli ◽  
Abdelkader Bengueddach
Keyword(s):  

Complexity ◽  
2006 ◽  
Vol 11 (3) ◽  
pp. 9-10 ◽  
Author(s):  
Harold J. Morowitz ◽  
Vijayasarathy Srinivasan ◽  
Eric Smith

1969 ◽  
Vol 57 (4) ◽  
pp. 821-825 ◽  
Author(s):  
Walter L. Nazimowitz ◽  
T. S. Ma

2002 ◽  
Vol 726 ◽  
Author(s):  
Benoit Lefevre ◽  
Pierre F. Gobin ◽  
Thierry Martin ◽  
Anne Galarneau ◽  
Daniel Brunel

AbstractRecently microporous and mesoporous materials were found to be particularly suitable for a new type of applications in the mechanical field. This paper reports experimental features about the dissipative forced intrusion of water in highly hydrophobic mesoporous materials: this phenomenon can be used to develop a new type of dampers and/or actuators. Silica-based materials behavior was investigated. Among them, MCM-41 exhibit original and interesting properties towards the potential developments of dampers and appear to be of great interest for the comprehension of energy dissipation mechanisms.


Sign in / Sign up

Export Citation Format

Share Document