scholarly journals Activation of NF-κB nuclear transcription factor by flow in human endothelial cells

2003 ◽  
Vol 1642 (1-2) ◽  
pp. 33-44 ◽  
Author(s):  
David C. Hay ◽  
Catherine Beers ◽  
Vicky Cameron ◽  
Lesley Thomson ◽  
Frederick W. Flitney ◽  
...  
2021 ◽  
Vol 22 (15) ◽  
pp. 8193
Author(s):  
Daniel Pérez-Cremades ◽  
Ana B. Paes ◽  
Xavier Vidal-Gómez ◽  
Ana Mompeón ◽  
Carlos Hermenegildo ◽  
...  

Background/Aims: Estrogen has been reported to have beneficial effects on vascular biology through direct actions on endothelium. Together with transcription factors, miRNAs are the major drivers of gene expression and signaling networks. The objective of this study was to identify a comprehensive regulatory network (miRNA-transcription factor-downstream genes) that controls the transcriptomic changes observed in endothelial cells exposed to estradiol. Methods: miRNA/mRNA interactions were assembled using our previous microarray data of human umbilical vein endothelial cells (HUVEC) treated with 17β-estradiol (E2) (1 nmol/L, 24 h). miRNA–mRNA pairings and their associated canonical pathways were determined using Ingenuity Pathway Analysis software. Transcription factors were identified among the miRNA-regulated genes. Transcription factor downstream target genes were predicted by consensus transcription factor binding sites in the promoter region of E2-regulated genes by using JASPAR and TRANSFAC tools in Enrichr software. Results: miRNA–target pairings were filtered by using differentially expressed miRNAs and mRNAs characterized by a regulatory relationship according to miRNA target prediction databases. The analysis identified 588 miRNA–target interactions between 102 miRNAs and 588 targets. Specifically, 63 upregulated miRNAs interacted with 295 downregulated targets, while 39 downregulated miRNAs were paired with 293 upregulated mRNA targets. Functional characterization of miRNA/mRNA association analysis highlighted hypoxia signaling, integrin, ephrin receptor signaling and regulation of actin-based motility by Rho among the canonical pathways regulated by E2 in HUVEC. Transcription factors and downstream genes analysis revealed eight networks, including those mediated by JUN and REPIN1, which are associated with cadherin binding and cell adhesion molecule binding pathways. Conclusion: This study identifies regulatory networks obtained by integrative microarray analysis and provides additional insights into the way estradiol could regulate endothelial function in human endothelial cells.


2010 ◽  
Vol 11 (2) ◽  
pp. 105
Author(s):  
L. Mattart ◽  
D. Simon ◽  
D. Calay ◽  
V. Tevel ◽  
M. Van Steenbrugge ◽  
...  

1998 ◽  
Vol 18 (3) ◽  
pp. 473-480 ◽  
Author(s):  
Yi Zhu ◽  
Jane H.-C. Lin ◽  
Hai-Ling Liao ◽  
Otto Friedli ◽  
Lynne Verna ◽  
...  

1998 ◽  
Vol 274 (3) ◽  
pp. H883-H891 ◽  
Author(s):  
Christi M. Terry ◽  
Jennifer A. Clikeman ◽  
John R. Hoidal ◽  
Karleen S. Callahan

Heme iron exacerbates oxidant damage by catalyzing the production of free radicals. Heme oxygenase is the rate-limiting enzyme involved in heme catabolism. An inducible form of heme oxygenase, heme oxygenase-1 (HO-1), is upregulated in oxidant and inflammatory settings, and recent work suggests that HO-1 induction may serve a protective function against oxidant injury. The ability of the endogenous inflammatory mediators, interleukin (IL)-1α, tumor necrosis factor-α (TNF-α), and IL-6, to enhance HO-1 expression in cultured human endothelial cells was examined in this study. HO-1 mRNA and protein expression were upregulated by IL-1α and TNF-α exposure but not by IL-6. Induction of HO-1 mRNA by IL-1α and TNF-α occurred in a concentration- and time-dependent fashion, with maximal expression occurring by 4 h for both cytokines. Induction depended on protein synthesis and occurred at the transcriptional level. Inhibition of the AP-1 transcription factor with curcumin decreased the cytokine induction of HO-1 mRNA, suggesting the involvement of this transcription factor in cytokine signaling of HO-1. The results of this study indicate that the endogenous inflammatory cytokines IL-1α and TNF-α induce HO-1 in endothelial cells, providing further evidence that HO-1 may be an important cellular response to inflammatory stress.


Sign in / Sign up

Export Citation Format

Share Document