105 poster: Captopril and S-Nitrosocaptopril as Potent Radiosensitizers: Comparative Study and Underlying Mechanisms.

2010 ◽  
Vol 94 ◽  
pp. S41
Author(s):  
B. Jordan ◽  
J. Peeterbroeck ◽  
O. Karroum ◽  
C. Diepart ◽  
J. Magat ◽  
...  
2018 ◽  
Vol 246 ◽  
pp. 335-342 ◽  
Author(s):  
Man Li ◽  
Qing-Jie Sun ◽  
Chuan-Wu Han ◽  
Hai-Hua Chen ◽  
Wen-Ting Tang

2010 ◽  
Vol 293 (2) ◽  
pp. 213-219 ◽  
Author(s):  
Bénédicte F. Jordan ◽  
Julie Peeterbroeck ◽  
Oussama Karroum ◽  
Caroline Diepart ◽  
Julie Magat ◽  
...  

1996 ◽  
Vol 439 ◽  
Author(s):  
T. E. Bloomer ◽  
D. Y. Lyu ◽  
J. Kameda

AbstractIntergranular impurity segregation induced during neutron irradiation (9.8 × 1024 n/mr at 438 °C) and thermal ageing has been studied in V-20 wt.% Ti alloys undoped, P doped and S doped all containing residual C and O. Neutron irradiation induced intergranular segregation and desegregation of S in undoped and S doped alloys, respectively. Thermal ageing resulted in a large increase in the S segregation in the undoped and S doped alloys. However, all unirradiated, aged and irradiated P doped alloys showed negligible S segregation. The vanadium alloys had smaller P segregation, compared to the S segregation in the undoped and S doped alloys. The irradiation and ageing enhanced the P segregation in a different fashion depending on the alloys. The grain boundary enrichment of C, O and Ti was reduced during the irradiation but promoted by the thermal ageing. The underlying mechanisms controlling intergranular impurity segregation caused by irradiation or thermal ageing are discussed in light of the impurity solubility change and dynamic interaction of defect and impurity fluxes.


2005 ◽  
Vol 495-497 ◽  
pp. 945-954
Author(s):  
Marc Seefeldt ◽  
Paul van Houtte

An attempt to model the nucleation of fragment boundaries during cold plastic deformation of f.c.c. metals is presented. The paper focuses on intrinsic nucleation in the grain interior due to elementary processes on the dislocation level. Since orientation fragmentation seems to be linked to slip banding and the underlying mechanisms should be the same, the model is based on the elementary process of double cross-slip. Simulations were carried out for Cu, Ni and Al. Fragment boundary spacings and misorientations could be predicted in reasonable agreement with experiment for Cu. For Ni, comparable results were obtained, when a stacking fault energy at the lower end of the range of literature data was chosen. The resulting rate equation for the generation of partial disclinations as carriers of orientation fragmentation can be implemented into an earlier model for the coupled substructure and texture development during cold plastic deformation.


2020 ◽  
Author(s):  
Bruno Oliveira Ferreira de Souza ◽  
Éve‐Marie Frigon ◽  
Robert Tremblay‐Laliberté ◽  
Christian Casanova ◽  
Denis Boire

2008 ◽  
Vol 44 ◽  
pp. 11-26 ◽  
Author(s):  
Ralph Beneke ◽  
Dieter Böning

Human performance, defined by mechanical resistance and distance per time, includes human, task and environmental factors, all interrelated. It requires metabolic energy provided by anaerobic and aerobic metabolic energy sources. These sources have specific limitations in the capacity and rate to provide re-phosphorylation energy, which determines individual ratios of aerobic and anaerobic metabolic power and their sustainability. In healthy athletes, limits to provide and utilize metabolic energy are multifactorial, carefully matched and include a safety margin imposed in order to protect the integrity of the human organism under maximal effort. Perception of afferent input associated with effort leads to conscious or unconscious decisions to modulate or terminate performance; however, the underlying mechanisms of cerebral control are not fully understood. The idea to move borders of performance with the help of biochemicals is two millennia old. Biochemical findings resulted in highly effective substances widely used to increase performance in daily life, during preparation for sport events and during competition, but many of them must be considered as doping and therefore illegal. Supplements and food have ergogenic potential; however, numerous concepts are controversially discussed with respect to legality and particularly evidence in terms of usefulness and risks. The effect of evidence-based nutritional strategies on adaptations in terms of gene and protein expression that occur in skeletal muscle during and after exercise training sessions is widely unknown. Biochemical research is essential for better understanding of the basic mechanisms causing fatigue and the regulation of the dynamic adaptation to physical and mental training.


2001 ◽  
Vol 268 (6) ◽  
pp. 1739-1748
Author(s):  
Aitor Hierro ◽  
Jesus M. Arizmendi ◽  
Javier De Las Rivas ◽  
M. Angeles Urbaneja ◽  
Adelina Prado ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document