Determination of stress field in buried thin pipelines resulting from ground subsidence due to longwall mining

1988 ◽  
Vol 6 (2) ◽  
pp. 205-216 ◽  
Author(s):  
S.S. Peng ◽  
Y. Luo
1972 ◽  
Vol 3 (6) ◽  
pp. 743-744
Author(s):  
F. V. Dolinskii ◽  
V. A. Marakhovskii

2016 ◽  
Vol 713 ◽  
pp. 94-98
Author(s):  
Ondřej Krepl ◽  
Jan Klusák ◽  
Tomáš Profant

A stress distribution in vicinity of a tip of polygon-like inclusion exhibits a singular stress behaviour. Singular stresses at the tip can be a reason for a crack initiation in composite materials. Knowledge of stress field is necessary condition for reliable assessment of such composites. A stress field near the general singular stress concentrator can be analytically described by means of Muskhelishvili plane elasticity based on complex variable functions. Parameters necessary for the description are the exponents of singularity and Generalized Stress Intensity Factors (GSIFs). The stress field in the closest vicinity of the SMI tip is thus characterized by 1 or 2 singular exponents (1 - λ) where, 0<Re (λ)<1, and corresponding GSIFs that follow from numerical solution. In order to describe stress filed further away from the SMI tip, the non-singular exponents for which 1<Re (λ), and factors corresponding to these non-singular exponents have to be taken into account. Analytical-numerical procedure of determination of stress distribution around a tip of sharp material inclusion is presented. Parameters entering to the procedure are varied and tuned. Thus recommendations are stated in order to gain reliable values of stresses and displacements.


Author(s):  
Ruthard Bonn ◽  
Klaus Metzner ◽  
H. Kockelmann ◽  
E. Roos ◽  
L. Stumpfrock

The main target of a research programme “experimental and numerical analyses on the residual stress field in the area of circumferential welds in austenitic pipe welds”, sponsored by Technische Vereinigung der Großkraftwerksbetreiber e. V. (VGB) and carried out at MPA Stuttgart, was the validation of the numerical calculation for the quantitative determination of residual stress fields in austenitic circumferential pipe welds. In addition, the influence of operational stresses as well as the impact of the pressure test on the residual stress state had to be examined. By using the TIG orbital welding technique, circumferential welds (Material X 10 CrNiNb 18 9 (1.4550, corresponding to TP 347) were produced (geometric dimensions 255.4 mm I.D. × 8.8 mm wall) with welding boundary conditions and weld parameters (number of weld layers and weld built-up, seam volume, heat input) which are representative for pipings in power plants. Deformation and temperature measurements accompanying the welding, as well as the experimentally determined (X-ray diffraction) welding residual stress distribution, served as the basis for the verification of numeric temperature and residual stress field calculations. The material model on which the calculations were founded was developed by experimental weld simulations in the thermo-mechanical test rig GLEEBLE 2000 for the determination of the material behaviour at different temperatures and elasto-plastic deformation. The numeric calculations were carried out with the Finite Element program ABAQUS. The comparison of the calculation results with the experimental findings confirms the proven validation of the developed numerical calculation models for the quantitative determination of residual stresses in austenitic circumferential pipings. The investigation gives a well-founded insight into the complex thermo-mechanical processes during welding, not known to this extent from literature previously.


2014 ◽  
Vol 611 ◽  
pp. 405-411 ◽  
Author(s):  
Oskar Ostertag ◽  
Eva Ostertagová ◽  
Peter Frankovský

The presented article is dedicated to stress state development while assessing the concentration of stresses in samples with continuously changing notches. These samples represent connecting elements of structural parts. The stress states of selected samples were determined experimentally by means of reflection photoelasticity. This method is suitable mainly for determination of stress state in the whole area in question, predominantly though for the analysis of stress concentration and its gradient in the notched area. Within the method of reflection photoelasticity, a layer was used to analyse the stress field. When loaded, this layer exhibits the ability of temporal birefringence. One of the statistical methods was selected in order to predict the stress state of other samples with bigger notches.


Sign in / Sign up

Export Citation Format

Share Document