Proton transfer between Cl− and C6H5OH. OH bond energy of phenol

1998 ◽  
Vol 175 (1-2) ◽  
pp. 123-132 ◽  
Author(s):  
Vincent F. DeTuri ◽  
Kent M. Ervin
Keyword(s):  
1997 ◽  
Vol 75 (9) ◽  
pp. 1195-1202 ◽  
Author(s):  
Michael A. McAllister

High-level ab initio molecular orbital and density functional theory calculations predict the existence of a very short-strong hydrogen bond in the monoanion of maleic acid (hydrogen maleate). At all levels of theory (HF, MP2, BLYP, and B3LYP) except B3PW91 the potential energy surface is predicted to contain two minima, and hence resembles a double well. The barrier to proton transfer via a symmetrical transition state is calculated to be very small at all levels of theory. In all cases the calculated zero point vibrational energy available to the system is larger than the calculated barrier for proton transfer, thus the resulting hydrogen bond formed in hydrogen maleate is predicted to be symmetrical. Using the B3PW91 functional and the 6-31 + G(d,p) basis set results in a single-well potential and a symmetrically positioned hydrogen. All correlated methods predict the gas phase hydrogen bond energy to be approximately 27 kcal/mol. Effects due to solvents were estimated using solvent cavity methods. Approximating the solvent as a dielectric continuum reduces the calculated hydrogen bond energy by roughly 6 kcal/mol at all levels of theory. Keywords: low-barrier hydrogen bonds, short-strong hydrogen bonds, hydrogen maleate, ab initio, density functional theory.


Author(s):  
Peter T. Smith ◽  
Sophia Weng ◽  
Christopher Chang

We present a bioinspired strategy for enhancing electrochemical carbon dioxide reduction catalysis by cooperative use of base-metal molecular catalysts with intermolecular second-sphere redox mediators that facilitate both electron and proton transfer. Functional synthetic mimics of the biological redox cofactor NADH, which are electrochemically stable and are capable of mediating both electron and proton transfer, can enhance the activity of an iron porphyrin catalyst for electrochemical reduction of CO<sub>2</sub> to CO, achieving a 13-fold rate improvement without altering the intrinsic high selectivity of this catalyst platform for CO<sub>2</sub> versus proton reduction. Evaluation of a systematic series of NADH analogs and redox-inactive control additives with varying proton and electron reservoir properties reveals that both electron and proton transfer contribute to the observed catalytic enhancements. This work establishes that second-sphere dual control of electron and proton inventories is a viable design strategy for developing more effective electrocatalysts for CO<sub>2</sub> reduction, providing a starting point for broader applications of this approach to other multi-electron, multi-proton transformations.


Sign in / Sign up

Export Citation Format

Share Document