An NADH-Inspired Redox Mediator Strategy to Promote Second-Sphere Electron and Proton Transfer for Cooperative Electrochemical CO2 Reduction Catalyzed by Iron Porphyrin

Author(s):  
Peter T. Smith ◽  
Sophia Weng ◽  
Christopher Chang

We present a bioinspired strategy for enhancing electrochemical carbon dioxide reduction catalysis by cooperative use of base-metal molecular catalysts with intermolecular second-sphere redox mediators that facilitate both electron and proton transfer. Functional synthetic mimics of the biological redox cofactor NADH, which are electrochemically stable and are capable of mediating both electron and proton transfer, can enhance the activity of an iron porphyrin catalyst for electrochemical reduction of CO<sub>2</sub> to CO, achieving a 13-fold rate improvement without altering the intrinsic high selectivity of this catalyst platform for CO<sub>2</sub> versus proton reduction. Evaluation of a systematic series of NADH analogs and redox-inactive control additives with varying proton and electron reservoir properties reveals that both electron and proton transfer contribute to the observed catalytic enhancements. This work establishes that second-sphere dual control of electron and proton inventories is a viable design strategy for developing more effective electrocatalysts for CO<sub>2</sub> reduction, providing a starting point for broader applications of this approach to other multi-electron, multi-proton transformations.

2020 ◽  
Author(s):  
Peter T. Smith ◽  
Sophia Weng ◽  
Christopher Chang

We present a bioinspired strategy for enhancing electrochemical carbon dioxide reduction catalysis by cooperative use of base-metal molecular catalysts with intermolecular second-sphere redox mediators that facilitate both electron and proton transfer. Functional synthetic mimics of the biological redox cofactor NADH, which are electrochemically stable and are capable of mediating both electron and proton transfer, can enhance the activity of an iron porphyrin catalyst for electrochemical reduction of CO<sub>2</sub> to CO, achieving a 13-fold rate improvement without altering the intrinsic high selectivity of this catalyst platform for CO<sub>2</sub> versus proton reduction. Evaluation of a systematic series of NADH analogs and redox-inactive control additives with varying proton and electron reservoir properties reveals that both electron and proton transfer contribute to the observed catalytic enhancements. This work establishes that second-sphere dual control of electron and proton inventories is a viable design strategy for developing more effective electrocatalysts for CO<sub>2</sub> reduction, providing a starting point for broader applications of this approach to other multi-electron, multi-proton transformations.


2021 ◽  
Vol 60 (6) ◽  
pp. 3843-3850
Author(s):  
Ashwin Chaturvedi ◽  
Caroline K. Williams ◽  
Nilakshi Devi ◽  
Jianbing “Jimmy” Jiang

2020 ◽  
Author(s):  
Xinyue Wang ◽  
Xiahan Sang ◽  
Chung-Li Dong ◽  
Siyu Yao ◽  
Ling Shuai ◽  
...  

Abstract Electrocatalysts play a key role in accelerating the sluggish electrochemical CO2 reduction (ECR) involving multi-electron and proton transfer. Herein, we develop a proton capture strategy via accelerating the water dissociation reaction catalyzed by transition metal nanoparticles (NPs) adjacent to atomically dispersed Ni-Nx active sites (Ni@NiNCM) to accelerate the proton transfer to the latter for boosting the intermediate protonation step, and hence the whole ECR process. For the first time, the accelerated protonation process is amply demonstrated experimentally. Aberration-corrected scanning transmission electron microscopy and synchrotron radiation X-ray absorption spectroscopy, together with DFT calculations, revealed that the Ni NPs accelerated the adsorbed H (Had) generation and transfer to the adjacent Ni-Nx sites for boosting the intermediate protonation and the overall ECR processes. This proton capture strategy is highly general, which can be extended to the design and preparation of various high-performance catalysts for diverse electrochemical reactions even beyond ECR.


2022 ◽  
Author(s):  
Yajie Yuan ◽  
Yazhen Zhao ◽  
Shuai Yang ◽  
Sheng Han ◽  
Chenbao Lu ◽  
...  

A novel pentagon-heptagon paired azulene group which possesses large dipole moment is immobilized to porphyrin. The as–prepared azulene iron porphyrin exhibits narrower bandgap and higher electrocatalytic CO2 reduction activity than...


Molecules ◽  
2021 ◽  
Vol 26 (18) ◽  
pp. 5524
Author(s):  
Kirill V. Kholin ◽  
Mikhail N. Khrizanforov ◽  
Vasily M. Babaev ◽  
Guliya R. Nizameeva ◽  
Salima T. Minzanova ◽  
...  

A selective noble-metal-free molecular catalyst has emerged as a fruitful approach in the quest for designing efficient and stable catalytic materials for CO2 reduction. In this work, we report that a sodium pectate complex of copper (PG-NaCu) proved to be highly active in the electrocatalytic conversion of CO2 to CH4 in water. Stability and selectivity of conversion of CO2 to CH4 as a product at a glassy carbon electrode were discovered. The copper complex PG-NaCu was synthesized and characterized by physicochemical methods. The electrochemical CO2 reduction reaction (CO2RR) proceeds at −1.5 V vs. Ag/AgCl at ~10 mA/cm2 current densities in the presence of the catalyst. The current density decreases by less than 20% within 12 h of electrolysis (the main decrease occurs in the first 3 h of electrolysis in the presence of CO2). This copper pectate complex (PG-NaCu) combines the advantages of heterogeneous and homogeneous catalysts, the stability of heterogeneous solid materials and the performance (high activity and selectivity) of molecular catalysts.


Sign in / Sign up

Export Citation Format

Share Document