The varicella zoster virus glycoprotein B (gB) plays a role in virus binding to cell surface heparan sulfate proteoglycans

1998 ◽  
Vol 53 (2) ◽  
pp. 197-207 ◽  
Author(s):  
Alain Jacquet ◽  
Michèle Haumont ◽  
Daya Chellun ◽  
Marc Massaer ◽  
Frank Tufaro ◽  
...  
2015 ◽  
Vol 290 (32) ◽  
pp. 19833-19843 ◽  
Author(s):  
Tadahiro Suenaga ◽  
Maki Matsumoto ◽  
Fuminori Arisawa ◽  
Masako Kohyama ◽  
Kouyuki Hirayasu ◽  
...  

2000 ◽  
Vol 74 (14) ◽  
pp. 6600-6613 ◽  
Author(s):  
Zuo-Hong Wang ◽  
Michael D. Gershon ◽  
Octavian Lungu ◽  
Zhenglun Zhu ◽  
Anne A. Gershon

ABSTRACT The trans-Golgi network (TGN) is putatively the site where varicella-zoster virus is enveloped. gE is targeted to the TGN by selective retrieval from the plasmalemma in response to signaling sequences in its endodomain. gI lacks these sequences but forms a complex with gE. We now find that gI is targeted to the TGN and plasma membrane when expressed in Cos-7 cells; nevertheless, surface labeling revealed that gI is not retrieved from the plasma membrane. TGN targeting of gI depended on the T338 of its endodomain and was lost when T338 was deleted or mutated to A, S, or D. The endodomain of gI was sufficient, if it contained T338, to target a fusion protein containing the ectodomain of the human interleukin-2 receptor to the TGN. A truncated protein consisting only of the gI ectodomain was secreted and taken up by nontransfected cells. This uptake of the secreted gI ectodomain was blocked by mannose 6-phosphate. Following cotransfection, both gI and gE were retrieved to the TGN from the plasma membrane in 26.7% of cells, neither gI nor gE was internalized in 18.3%, and gE was retrieved to the TGN while gI remained at the plasma membrane in 55%. We suggest that the T338 of its endodomain is necessary to retain gI in the TGN; moreover, because gI and gE interact, the signaling sequences of each glycoprotein reinforce one another in ensuring that both glycoproteins are concentrated in the TGN yet remain on the cell surface.


Virology ◽  
1990 ◽  
Vol 178 (1) ◽  
pp. 263-272 ◽  
Author(s):  
Virginia Litwin ◽  
Matyas Sandor ◽  
Charles Grose

1998 ◽  
Vol 178 (s1) ◽  
pp. S2-S6 ◽  
Author(s):  
Julie K. Olson ◽  
Richard A. Santos ◽  
Charles Grose

2017 ◽  
Author(s):  
Barbara E. Stopschinski ◽  
Brandon B. Holmes ◽  
Gregory M. Miller ◽  
Jaime Vaquer-Alicea ◽  
Linda C. Hsieh-Wilson ◽  
...  

AbstractTranscellular propagation of aggregate “seeds” has been proposed to mediate progression of neurodegenerative diseases in tauopathies and α-synucleinopathies. We have previously determined that tau and α-synuclein aggregates bind heparan sulfate proteoglycans (HSPGs) on the cell surface. This mediates uptake and intracellular seeding. The specificity and mode of binding to HSPGs has been unknown. We used modified heparins to determine the size and sulfation requirements of glycosaminoglycan (GAGs) binding to aggregates in biochemical and cell uptake and seeding assays. Aggregates of tau require a precise GAG architecture with defined sulfate moieties in the N- and 6-O-positions, whereas α-synuclein and Aβ rely slightly more on overall charge on the GAGs. To determine the genetic requirements for aggregate uptake, we individually knocked out the major genes of the HSPG synthesis pathway using CRISPR/Cas9 in HEK293T cells. Knockout of EXT1, EXT2 and EXTL3, N-sulfotransferase (NDST1), and 6-O-sulfotransferase (HS6ST2) significantly reduced tau uptake. α-Synuclein was not sensitive to HS6ST2 knockout. Good correlation between pharmacologic and genetic manipulation of GAG binding by tau and α-synuclein indicates specificity that may help elucidate a path to mechanism-based inhibition of transcellular propagation of pathology.


Sign in / Sign up

Export Citation Format

Share Document