PO398 FASTING GLUCOSE IN PATIENTS WITH TYPE 2 DIABETES IN CAMBODIA: RELATIONSHIPS TO PSYCHOLOGICAL DISTRESS AND METFORMIN

2014 ◽  
Vol 106 ◽  
pp. S248-S249
Author(s):  
J. Wagner ◽  
L. Keuky ◽  
M.S. Oeun ◽  
I.S. Horn ◽  
M. Scully ◽  
...  
Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 1535-P ◽  
Author(s):  
HYE-IN JUNG ◽  
JAEHYUN BAE ◽  
EUGENE HAN ◽  
GYURI KIM ◽  
JI-YEON LEE ◽  
...  

Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 1476-P
Author(s):  
AOIFE M. EGAN ◽  
CHRISTINA WOOD-WENTZ ◽  
KENT R. BAILEY ◽  
ADRIAN VELLA

2019 ◽  
Author(s):  
Ya-Sian Chang ◽  
Li-Yun Hsiao ◽  
Chien-Yu Lin ◽  
Mu-Chin Shih ◽  
Ming-Chia Hsieh ◽  
...  

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Weiqi Wang ◽  
Haiyang Jiang ◽  
Ziwei Zhang ◽  
Wei Duan ◽  
Tianshu Han ◽  
...  

Abstract Background and objectives Previous studies have found the important gene-diet interactions on type 2 diabetes (T2D) incident but have not followed branched-chain amino acids (BCAAs), even though they have shown heterogeneous effectiveness in diabetes-related factors. So in this study, we aim to investigate whether dietary BCAAs interact with the genetic predisposition in relation to T2D risk and fasting glucose in Chinese adults. Methods In a case-control study nested in the Harbin Cohort Study on Diet, Nutrition and Chronic Non-Communicable Diseases, we obtained data for 434 incident T2D cases and 434 controls matched by age and sex. An unweighted genetic risk score (GRS) was calculated for 25 T2D-related single nucleotide polymorphisms by summation of the number of risk alleles for T2D. Multivariate logistic regression models and general linear regression models were used to assess the interaction between dietary BCAAs and GRS on T2D risk and fasting glucose. Results Significant interactions were found between GRS and dietary BCAAs on T2D risk and fasting glucose (p for interaction = 0.001 and 0.004, respectively). Comparing with low GRS, the odds ratio of T2D in high GRS were 2.98 (95% CI 1.54–5.76) among those with the highest tertile of total BCAA intake but were non-significant among those with the lowest intake, corresponding to 0.39 (0.12) mmol/L versus − 0.07 (0.10) mmol/L fasting glucose elevation per tertile. Viewed differently, comparing extreme tertiles of dietary BCAAs, the odds ratio (95% CIs) of T2D risk were 0.46 (0.22–0.95), 2.22 (1.15–4.31), and 2.90 (1.54–5.47) (fasting glucose elevation per tertile: − 0.23 (0.10), 0.18 (0.10), and 0.26 (0.13) mmol/L) among participants with low, intermediate, and high genetic risk, respectively. Conclusions This study indicated that dietary BCAAs could amplify the genetic association with T2D risk and fasting glucose. Moreover, higher BCAA intake showed positive association with T2D when genetic predisposition was also high but changed to negative when genetic predisposition was low.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Be‐Ikuu Dominic Doglikuu ◽  
Abubakari Abdulai ◽  
Mehdi Yaseri ◽  
Elham Shakibazadeh ◽  
Abolghassem Djazayery ◽  
...  

BMC Medicine ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Shiu Lun Au Yeung ◽  
Jie V Zhao ◽  
C Mary Schooling

Abstract Background Observational studies suggest poorer glycemic traits and type 2 diabetes associated with coronavirus disease 2019 (COVID-19) risk although these findings could be confounded by socioeconomic position. We conducted a two-sample Mendelian randomization to clarify their role in COVID-19 risk and specific COVID-19 phenotypes (hospitalized and severe cases). Method We identified genetic instruments for fasting glucose (n = 133,010), 2 h glucose (n = 42,854), glycated hemoglobin (n = 123,665), and type 2 diabetes (74,124 cases and 824,006 controls) from genome wide association studies and applied them to COVID-19 Host Genetics Initiative summary statistics (17,965 COVID-19 cases and 1,370,547 population controls). We used inverse variance weighting to obtain the causal estimates of glycemic traits and genetic predisposition to type 2 diabetes in COVID-19 risk. Sensitivity analyses included MR-Egger and weighted median method. Results We found genetic predisposition to type 2 diabetes was not associated with any COVID-19 phenotype (OR: 1.00 per unit increase in log odds of having diabetes, 95%CI 0.97 to 1.04 for overall COVID-19; OR: 1.02, 95%CI 0.95 to 1.09 for hospitalized COVID-19; and OR: 1.00, 95%CI 0.93 to 1.08 for severe COVID-19). There were no strong evidence for an association of glycemic traits in COVID-19 phenotypes, apart from a potential inverse association for fasting glucose albeit with wide confidence interval. Conclusion We provide some genetic evidence that poorer glycemic traits and predisposition to type 2 diabetes unlikely increase the risk of COVID-19. Although our study did not indicate glycemic traits increase severity of COVID-19, additional studies are needed to verify our findings.


Sign in / Sign up

Export Citation Format

Share Document