Some applications of lasers to experimental high-energy density physics at Lawrence Livermore National Laboratory

Author(s):  
E Michael Campbell
Author(s):  
Brandon M. Wilson ◽  
Aaron Koskelo

Los Alamos National Laboratory is interested in developing high-energy-density physics validation capabilities for its multiphysics code xRAGE. xRAGE was recently updated with the laser package Mazinisin to improve predictability. We assess the current implementation and coupling of the laser package via validation of laser-driven, direct-drive spherical capsule experiments from the Omega laser facility. The ASME V&V 20-2009 standard is used to determine the model confidence of xRAGE, and considerations for high-energy-density physics are identified. With current modeling capabilities in xRAGE, the model confidence is overwhelmed by significant systematic errors from the experiment or model. Validation evidence suggests cross-beam energy transfer as a dominant source of the systematic error.


2018 ◽  
Vol 116 (37) ◽  
pp. 18233-18238 ◽  
Author(s):  
Bruce A. Remington ◽  
Hye-Sook Park ◽  
Daniel T. Casey ◽  
Robert M. Cavallo ◽  
Daniel S. Clark ◽  
...  

The Rayleigh–Taylor (RT) instability occurs at an interface between two fluids of differing density during an acceleration. These instabilities can occur in very diverse settings, from inertial confinement fusion (ICF) implosions over spatial scales of∼10−3−10−1cm (10–1,000 μm) to supernova explosions at spatial scales of∼1012cm and larger. We describe experiments and techniques for reducing (“stabilizing”) RT growth in high-energy density (HED) settings on the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory. Three unique regimes of stabilization are described: (i) at an ablation front, (ii) behind a radiative shock, and (iii) due to material strength. For comparison, we also show results from nonstabilized “classical” RT instability evolution in HED regimes on the NIF. Examples from experiments on the NIF in each regime are given. These phenomena also occur in several astrophysical scenarios and planetary science [Drake R (2005)Plasma Phys Controlled Fusion47:B419–B440; Dahl TW, Stevenson DJ (2010)Earth Planet Sci Lett295:177–186].


2021 ◽  
Vol 92 (3) ◽  
pp. 033542
Author(s):  
L. G. Suttle ◽  
J. D. Hare ◽  
J. W. D. Halliday ◽  
S. Merlini ◽  
D. R. Russell ◽  
...  

2021 ◽  
Vol 91 (3) ◽  
pp. 250-260
Author(s):  
S. G. Garanin ◽  
S. V. Garnov ◽  
A. M. Sergeev ◽  
E. A. Khazanov

Author(s):  
Yongtao Zhao ◽  
Rui Cheng ◽  
Yuyu Wang ◽  
Xianming Zhou ◽  
Yu Lei ◽  
...  

Abstract Recent research activities relevant to high energy density physics (HEDP) driven by the heavy ion beam at the Institute of Modern Physics, Chinese Academy of Sciences are presented. Radiography of static objects with the fast extracted high energy carbon ion beam from the Cooling Storage Ring is discussed. Investigation of the low energy heavy ion beam and plasma interaction is reported. With HEDP research as one of the main goals, the project HIAF (High Intensity heavy-ion Accelerator Facility), proposed by the Institute of Modern Physics as the 12th five-year-plan of China, is introduced.


2018 ◽  
Vol 46 (11) ◽  
pp. 3928-3967 ◽  
Author(s):  
R. D. McBride ◽  
W. A. Stygar ◽  
M. E. Cuneo ◽  
D. B. Sinars ◽  
M. G. Mazarakis ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document