Numerical study of effects of the beam tube on laser fields with a three-dimensional simulation code using the finite element method

Author(s):  
Masaaki Sobajima ◽  
Yonggui Li ◽  
Tetsuo Yamazaki ◽  
Kiyoshi Yoshikawa ◽  
Masami Ohnishi ◽  
...  
2005 ◽  
Vol 288 (3) ◽  
pp. C510-C522 ◽  
Author(s):  
Jun-ichi Okada ◽  
Seiryo Sugiura ◽  
Satoshi Nishimura ◽  
Toshiaki Hisada

To investigate the characteristics and underlying mechanisms of Ca2+ wave propagation, we developed a three-dimensional (3-D) simulator of cardiac myocytes, in which the sarcolemma, myofibril, and Z-line structure with Ca2+ release sites were modeled as separate structures using the finite element method. Similarly to previous studies, we assumed that Ca2+ diffusion from one release site to another and Ca2+-induced Ca2+ release were the basic mechanisms, but use of the finite element method enabled us to simulate not only the wave propagation in 3-D space but also the active shortening of the myocytes. Therefore, in addition to the dependence of the Ca2+ wave propagation velocity on the sarcoplasmic reticulum Ca2+ content and affinity of troponin C for Ca2+, we were able to evaluate the influence of active shortening on the propagation velocity. Furthermore, if the initial Ca2+ release took place in the proximity of the nucleus, spiral Ca2+ waves evolved and spread in a complex manner, suggesting that this phenomenon has the potential for arrhythmogenicity. The present 3-D simulator, with its ability to study the interaction between Ca2+ waves and contraction, will serve as a useful tool for studying the mechanism of this complex phenomenon.


1990 ◽  
Vol 18 (4) ◽  
pp. 216-235 ◽  
Author(s):  
J. De Eskinazi ◽  
K. Ishihara ◽  
H. Volk ◽  
T. C. Warholic

Abstract The paper describes the intention of the authors to determine whether it is possible to predict relative belt edge endurance for radial passenger car tires using the finite element method. Three groups of tires with different belt edge configurations were tested on a fleet test in an attempt to validate predictions from the finite element results. A two-dimensional, axisymmetric finite element analysis was first used to determine if the results from such an analysis, with emphasis on the shear deformations between the belts, could be used to predict a relative ranking for belt edge endurance. It is shown that such an analysis can lead to erroneous conclusions. A three-dimensional analysis in which tires are modeled under free rotation and static vertical loading was performed next. This approach resulted in an improvement in the quality of the correlations. The differences in the predicted values of various stress analysis parameters for the three belt edge configurations are studied and their implication on predicting belt edge endurance is discussed.


2014 ◽  
Vol 644-650 ◽  
pp. 1551-1555
Author(s):  
Jian Ming Zhang ◽  
Yong He

This paper is concerned with the convergence of the h-p version of the finite element method for three dimensional Poisson problems with edge singularity on quasi-uniform meshes. First, we present the theoretical results for the convergence of the h-p version of the finite element method with quasi-uniform meshes for elliptic problems on polyhedral domains on smooth functions in the framework of Jacobi-weighted Sobolev spaces. Second, we investigate and analyze numerical results for three dimensional Poission problems with edge singularity. Finally, we verified the theoretical predictions by the numerical computation.


1979 ◽  
Vol 24 (90) ◽  
pp. 489-490 ◽  
Author(s):  
J. J. Emery ◽  
E. A. Hanafy ◽  
G. H. Holdsworth ◽  
F. Mirza

Abstract The finite-element method is being used to simulate glacier flow problems, with particular emphasis on the surge behaviour of the Barnes Ice Cap, Baffin Island. Following an advanced feasibility study to determine the influence of major factors such as bed topography and flow relationships, a refined simulation model is being developed to incorporate realistically: the thermal regime of the ice mass; large deformations during flow and sliding; basal sliding zones; a temperature and stress dependent ice flow relationship; mass balance; and three-dimensional influences. The findings of the advanced feasibility study on isothermal, steady-state flow of the Barnes Ice Cap are presented in the paper before turning to a detailed discussion of the refined simulation model and its application to surging. It is clear that the finite-element method allows necessary refinements not available to analytical approaches.


2013 ◽  
Vol 22 (3) ◽  
pp. 309-314 ◽  
Author(s):  
Guilherme Carvalho Silva ◽  
Tulimar Machado Pereira Cornacchia ◽  
Estevam Barbosa de Las Casas ◽  
Cláudia Silami de Magalhães ◽  
Allyson Nogueira Moreira

Sign in / Sign up

Export Citation Format

Share Document