Plasma shielding effect in laser ablation of metallic samples and its influence on LIBS analysis

1998 ◽  
Vol 127-129 ◽  
pp. 309-314 ◽  
Author(s):  
J.A. Aguilera ◽  
C. Aragón ◽  
F. Peñalba
2013 ◽  
Vol 1 (1) ◽  
Author(s):  
Deepak Marla ◽  
Upendra V. Bhandarkar ◽  
Suhas S. Joshi

This paper presents a comprehensive transient model of various phenomena that occur during laser ablation of TiC target at subnanosecond time-steps. The model is a 1D numerical simulation using finite volume method (FVM) on a target that is divided into subnanometric layers. The phenomena considered in the model include: plasma initiation, uniform plasma expansion, plasma shielding of incoming radiation, and temperature dependent material properties. It is observed that, during the target heating, phase transformations of any layer occur within a few picoseconds, which is significantly lower than the time taken for it to reach boiling point (~ns). The instantaneous width of the phase transformation zones is observed to be negligibly small (<5nm). In addition, the width of the melt zone remains constant once ablation begins. The melt width decreases with an increase in fluence and increases with an increase in pulse duration. On the contrary, the trend in the ablation depth is exactly opposite. The plasma absorbs about 25–50% of the incoming laser radiation at high fluences (20-40 J/cm2), and less than 5% in the range of 5-10 J/cm2. The simulated results of ablation depth on TiC are in good agreement at lower fluences. At moderate laser fluences (10-25 J/cm2), the discrepancy of the error increases to nearly ±7%. Under prediction of ablation depth by 15% at high fluences of 40 J/cm2 suggests the possibility of involvement of other mechanisms of removal such as melt expulsion and phase explosion at very high fluences.


1996 ◽  
Vol 10 (07) ◽  
pp. 293-297
Author(s):  
V. VIDYALAL ◽  
K. RAJASREE ◽  
C.P.G. VALLABHAN

A simple experimental set-up is described to measure the electromagnetic shielding property of high Tc superconducting samples. Measurements were performed using HTSC materials in the form of laser ablated thin films, powders and sintered pellets. Samples used were Gd-123 in pure and doped form as well as a few Bi-based superconducting ceramics. For comparison, similar measurements were carried out on metals like aluminium, copper and μ metal. Very effective shielding was observed for HTSC materials compared to the conventional materials mentioned above. However it also depended on the sample types and poor shielding was observed for powdered HTSC material in comparison to thin films prepared by laser ablation.


2016 ◽  
Vol 34 (3) ◽  
pp. 493-505 ◽  
Author(s):  
M. Pishdast ◽  
A. Eslami Majd ◽  
M. Kavosh Tehrani

AbstractThe influence of plasma shielding effect induced by ambient gas pressure and laser intensity on the laser-produced Cu plasma parameters, signal-to-background ratio (S/B) and expansion are experimentally and numerically investigated. A Q-switched Nd:YAG laser at 1064 nm at various intensities ranging from 2 to 7.1 GW/cm2 intensity (40–150 mJ) is used to produce Cu plasma in air, argon (Ar), helium (He), and neon (Ne) ambient gas at various pressures ranging from 5 to 1000 mbar. Laser-induced breakdown spectroscopy reveals that spectral radiation, S/B, electron temperature, number density, and front edge velocity of the plasma have an increasing trend up to a certain value of laser intensity and gas pressure. Afterwards, a saturation trend is achieved, which is attributed to the shielding and self-regulation effect. The numerical modeling of the laser-produced Cu plasma in the presence of air at atmospheric pressure is carried out using the MULTI radiation hydrodynamics code. We have shown that the feature of plasma shielding effect observed in the experiments can be reproduced using a continuum hydrodynamics model. Laser intensity at about 3.5 GW/cm2 is found to produce the highest S/B at 1000 mbar air. He, Ne, air, and Ar show the best S/B, respectively and the best S/B is found for air, Ar, He, and Ne at 10, 5, 10, and 20 mbar, respectively. The expansion of plasma plume is studied using a simple and effective technique based on probe laser absorption and scattering method. The plasma plume expansion through He, Ne, air, and Ar at 1000 mbar pressure has the highest velocity, respectively. The simulated results of strong shock wave model and Rankine–Hugoniot jump condition are fitted to the experimental data, which are then used to estimate the values of the ablation parameters.


1996 ◽  
pp. 126-130
Author(s):  
Xianglei Mao ◽  
Wing-Tat Chan ◽  
Manuel Caetano ◽  
Mark A. Shannon ◽  
Richard E. Russo

2005 ◽  
Vol 362 (1-4) ◽  
pp. 82-87 ◽  
Author(s):  
Duanming-Zhang ◽  
Dan Liu ◽  
Zhihua-Li ◽  
Sipu-Hou ◽  
Boming-Yu ◽  
...  

2008 ◽  
Vol 8 (11) ◽  
pp. 6075-6081
Author(s):  
Kedar Pathak ◽  
Alex Povitsky

The time span of plume dynamics in laser ablation of carbon ranges from nanoseconds to milliseconds. Multi-time step approach is developed to study the plume dynamics over this entire range with minimum requirements of numerical computational resources. This approach is applied to study one of the important aspects of nanosecond-scale laser ablation, namely the shielding of incident laser beam with previously ejected plumes. Capturing the shielding effect requires smaller than nanosecond-scale time step because of large velocity and pressure gradients in plume. Use of this time step over the entire domain needs enormous amount of computer time to cover the whole time span of plume dynamics. Multi-time step modeling for such an application is therefore useful. In general, for nanosecond-scale laser ablation this shielding is caused by ionized particles and by gas molecules. It is shown for carbon plume resulting from the nanosecond-scale lasers that the degree of ionization is small. Ionization of ablated carbon is estimated by Saha equation for the given initial plume conditions. The shielding of incident laser beam is therefore calculated by normal molecular absorption. The laser-light intensity that reaches the target for subsequent pulses is evaluated.


Sign in / Sign up

Export Citation Format

Share Document