TOF study of pulsed-laser ablation of aluminum nitride for thin film growth

1999 ◽  
Vol 137 (1-4) ◽  
pp. 91-97 ◽  
Author(s):  
C Chu ◽  
P.P Ong ◽  
H.F Chen ◽  
H.H Teo
2009 ◽  
Vol 42 (12) ◽  
pp. 125304 ◽  
Author(s):  
D K Shukla ◽  
Ravi Kumar ◽  
S K Sharma ◽  
P Thakur ◽  
R J Choudhary ◽  
...  

Author(s):  
M. Grant Norton ◽  
C. Barry Carter

Pulsed-laser ablation has been widely used to produce high-quality thin films of YBa2Cu3O7-δ on a range of substrate materials. The nonequilibrium nature of the process allows congruent deposition of oxides with complex stoichiometrics. In the high power density regime produced by the UV excimer lasers the ablated species includes a mixture of neutral atoms, molecules and ions. All these species play an important role in thin-film deposition. However, changes in the deposition parameters have been shown to affect the microstructure of thin YBa2Cu3O7-δ films. The formation of metastable configurations is possible because at the low substrate temperatures used, only shortrange rearrangement on the substrate surface can occur. The parameters associated directly with the laser ablation process, those determining the nature of the process, e g. thermal or nonthermal volatilization, have been classified as ‘primary parameters'. Other parameters may also affect the microstructure of the thin film. In this paper, the effects of these ‘secondary parameters' on the microstructure of YBa2Cu3O7-δ films will be discussed. Examples of 'secondary parameters' include the substrate temperature and the oxygen partial pressure during deposition.


2011 ◽  
Vol 1305 ◽  
Author(s):  
Ikurou Umezu ◽  
Shunto Okubo ◽  
Akira Sugimura

ABSTRACTThe Si nanocrystal-films are prepared by pulsed laser ablation of Si target in a mixture of helium and hydrogen gas. The total gas pressure and hydrogen partial gas pressure were varied to control structure of nanocrystal-film. The surface of Si nanocrystallite was hydrogenated and degree of hydrogenation increased with increasing hydrogen partial gas pressure. The aggregate structure of nanocrystal-film depended on both the total gas pressure and the hydrogen partial gas pressure. The former and the latter alter spatial confinement of Si species during deposition and the surface hydrogenation of individual nanocrystal, respectively. Spatial confinement increases probability of collision between nanocrystals in the plume. While, surface hydrogenation prevents coalescence of nanocrystals. The individual or aggregated nanocrystals formed in the plume reach the substrate and the nanocrystal-film is deposited on the substrate. The non-equilibrium growth processes during pulsed laser ablation are essential for the formation of the surface structure and the subsequent nanocrystal-film growth. Our results indicate that the structure of nanocrystal-film depends on the probabilities of collision and coalescence between nanocrystals in the plume. These probabilities can be varied by controlling the total gas pressure and the hydrogen partial gas pressure.


2019 ◽  
Vol 45 (10) ◽  
pp. 13138-13143 ◽  
Author(s):  
Haiyang Hu ◽  
Fei Shao ◽  
Jikun Chen ◽  
Max Döbeli ◽  
Qingfeng Song ◽  
...  

2001 ◽  
Vol 7 (S2) ◽  
pp. 1220-1221
Author(s):  
J. E. Dominguez ◽  
L. Fu ◽  
X. Q. Pan

Tin dioxide (SnO2) has been extensively studied and used as gas sensors to detect toxic gases such as CO, NOxand flammable gases like H2.[l] Recently, considerable researches have focused on thin film sensors due to their high performance as well as their integration compatibility with semiconductor technology for making microsensors and sensor arrays. [2] The performance of thin film sensors is remarkably influenced by the way they were fabricated.[3] Among various deposition techniques, pulsed laser deposition (PLD) has shown great prominence in the deposition of a wide variety of oxide thin film materials such as high Tc superconductors, semiconductors and dielectrics. in this work we present our experimental results on tin dioxide films deposited using pulsed laser ablation on sapphire (α -Al2O3) substrates with different surface orientations.Tin oxide films with a thickness of 100 nm were deposited on the (1012) and (0001) sapphire by pulsed laser ablation of ceramic SnO2 targets.


Sign in / Sign up

Export Citation Format

Share Document