Resistance to NK Cell-Mediated Cytotoxicity (in K-562 Cells) does not Correlate with Class I MHC Antigen Levels

Immunobiology ◽  
1991 ◽  
Vol 183 (1-2) ◽  
pp. 23-39 ◽  
Author(s):  
Zvi Reiter ◽  
Yoram Reiter ◽  
Zvi Fishelson ◽  
Meir Shinitzky ◽  
Abraham Kessler ◽  
...  
Keyword(s):  
Nk Cell ◽  
Class I ◽  
2006 ◽  
pp. 1-30
Author(s):  
Peter J. Miller ◽  
Edward J. Collins

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2862-2862
Author(s):  
Robert Godal ◽  
Michelle Gleason ◽  
Valarie McCullar ◽  
Sarah Cooley ◽  
Michael Verneris ◽  
...  

Abstract Effective therapeutic options are lacking for patients with primary refractory or relapsed acute myelogenous leukemia (AML). We have shown that adoptive transfer of haploidentical NK cells can result in complete remissions (25%) in patients with refractory disease but this procedure is still limited by a high failure rate. Based on the finding that 29±3% (n=26) of normal CD56dim NK cells are KIR− NKG2A+, we hypothesized that non-KIR class I MHC inhibitory receptors may play a bigger role than previously recognized in the cumulative integration of signals that determine whether leukemia targets are killed by NK cells. We studied the role of NKG2A and KIR inhibitory signals on primary AML and acute lymphoblastic leukemia (ALL) targets collected by therapeutic lymphapheresis. Blast susceptibility to fresh resting polyclonal allogeneic NK cells (enriched by CD3 depletion) and to NK cells activated with low pharmacologic doses of IL-2 for 72 hours was determined using flow cytometry based cytotoxicity assays and a degranulation assay using CD107a. The role of inhibitory signaling through class I MHC-recognizing receptors was tested by blocking interactions between receptor and cognate ligand using 1) a pan-MHC monoclonal antibody (mAb) (clone HP17-F) recognizing HLA-A, B, C and E, 2) an anti-KIR reagent (1-7F9 which blocks inhibitory KIR2DL1/L2/L3) currently in clinical trials (Novonordisk, Copenhagen) and 3) a mAb against NKG2A (clone Z199). Susceptibility to killing was defined as >10% lysis at an E:T ratio of 10:1. Two of 8 leukemias (25%) were lysed by resting allogeneic NK cells. NK cells activated with IL-2 (5U/ml) killed 7 of 8 targets (average increase of 13±2.2% lysis). In 3 AMLs killing was significantly enhanced by pan-MHC mAb blockade, but was less enhanced by anti-KIR blockade. NKG2A blockade alone also increased killing, and when added to anti-KIR blockade AML killing was equal to that obtained with MHC blockade. This suggests that non-KIR class I recognizing interactions were operant. Interestingly, anti-KIR blockade did significantly enhance killing of ALL targets suggesting that higher MHC expression (MFI 3-fold greater) may be a dominant factor to NK cell susceptibility in ALL. These findings support the notion that susceptibility to NK cell lysis is determined by interactions beyond just KIR and KIR-ligands. To explore this further KIR− NK cells were enriched with immunomagnetic bead separation (80% NKG2A+). AML target killing by these IL-2 activated KIR−NKG2A+ NK cells increased significantly after pan-MHC and NKG2A blockade (from an average baseline of 21% lysis to 34% for both), but no increase was seen with KIR blockade. This suggests that a significant proportion of normal NK cells are negatively regulated by KIR-independent mechanisms interacting with HLA-E. In summary, interrupting dominant NK cell receptor interactions with class I MHC ligands may lead to better strategies to treat AML and even ALL. NKG2A blockade may be a good target as it is highly expressed on virtually all NK cells reconstituting in the first 3 months after allogeneic HCT and it identifies NK cells with effector function in normal subjects (Cooley et al, Blood110:5782007). The combination of inhibitory signal blockade with other activators such as low dose IL-2 or mAb capable of ADCC may be needed to best exploit the clinical therapeutic potential of NK cells.


Blood ◽  
1998 ◽  
Vol 92 (2) ◽  
pp. 690-694
Author(s):  
K.J. Kao ◽  
M.L.U. del Rosario

It has been shown that peripheral-blood mononuclear leukocytes (MNL) are responsible for transfusion-induced alloimmunization to donor major histocompatability complex (MHC) antigens. However, it is not known which subset of MNL is responsible for this immune response. Because elimination of class-II MHC antigen-positive passenger leukocytes effectively prolongs the survival of allografts, it has been hypothesized that class-II positive MNL are responsible for immunizing transfusion recipients to donor MHC antigens. To test this hypothesis, two different approaches were used. First, we compared the alloantigenicity of BALB/c mice (H-2d) peripheral blood MNL before and after depletion of class-II positive cells. CBA mice (H-2k) were used as transfusion recipients. Antibody development to donor class-I H-2 antigens was determined by flow cytometry and enzyme-linked immunoassay. After four weekly transfusions of MNL depleted for class-II positive cells, only 25% of recipient mice developed antibodies to donor H-2d antigens. In contrast, all mice transfused with control MNL became immunized. Second, we studied the alloantigenicity of peripheral MNL from C57BL/6 mice (H-2b) with homozygous deficiency of class-II MHC molecules in H-2 disparate recipient mice. After transfusions with class-II MHC molecule-deficient MNL, 0% of BALB/c, 40% of C57BR, and 25% of CBA-recipient mice developed antibodies to donor H-2b antigen. All control recipient mice were immunized. The antibody activities of the controls were also higher than those in the treatment group who became immunized. Thus, our study shows that class-II MHC antigen-positive MNL play a significant role in transfusion-induced alloimmunization to donor class-I MHC antigens. The results also support the hypothesis that direct antigen presentation by donor class-II positive MNL to the immune system of transfusion recipients is critical for the initiation of humoral immune response to donor MHC antigens.


1997 ◽  
Vol 64 (10) ◽  
pp. 1407-1414 ◽  
Author(s):  
Shih-Chieh Chueh ◽  
Ling Tian ◽  
Min Wang ◽  
Mou-Er Wang ◽  
Stanislaw M. Stepkowski ◽  
...  

Nature ◽  
2000 ◽  
Vol 405 (6786) ◽  
pp. 537-543 ◽  
Author(s):  
Jeffrey C. Boyington ◽  
Shawn A. Motyka ◽  
Peter Schuck ◽  
Andrew G. Brooks ◽  
Peter D. Sun

1989 ◽  
Vol 170 (6) ◽  
pp. 2177-2182 ◽  
Author(s):  
C M Roifman ◽  
D Hummel ◽  
H Martinez-Valdez ◽  
P Thorner ◽  
P J Doherty ◽  
...  

CD8 molecules expressed on the surface of a subset of T cells participate in the selection of class I MHC antigen-restricted T cells in the thymus, and in MHC-restricted immune responses of mature class I MHC antigen-restricted T cells. Here we describe an immune-deficient patient with lack of CD8+ peripheral blood cells. The patient presented with Pneumocystis carinii pneumonia and was unable to reject an allogeneic skin graft, but had normal primary and secondary antibody responses. Examination of the patient's thymus revealed that the loss of CD8+ cells occurred during intrathymic differentiation: the patient's immature cortical thymocytes included both CD4+ and CD8+ cells while the mature medullary cells expressed the CD4 but not the CD8 protein on their surface. Northern blot and polymerase chain reaction analyses revealed the presence of CD8 alpha and beta mRNA in the patient's thymus but not in the peripheral blood. Both class I MHC antigen expression and the expressed TCR V beta repertoire are normal in this patient. These data are consistent with an impaired selection of CD8+ cells in the patient's thymus and support the role of the CD8 surface protein in thymic selection previously characterized in genetically manipulated and inbred mice.


Blood ◽  
1998 ◽  
Vol 92 (2) ◽  
pp. 690-694 ◽  
Author(s):  
K.J. Kao ◽  
M.L.U. del Rosario

Abstract It has been shown that peripheral-blood mononuclear leukocytes (MNL) are responsible for transfusion-induced alloimmunization to donor major histocompatability complex (MHC) antigens. However, it is not known which subset of MNL is responsible for this immune response. Because elimination of class-II MHC antigen-positive passenger leukocytes effectively prolongs the survival of allografts, it has been hypothesized that class-II positive MNL are responsible for immunizing transfusion recipients to donor MHC antigens. To test this hypothesis, two different approaches were used. First, we compared the alloantigenicity of BALB/c mice (H-2d) peripheral blood MNL before and after depletion of class-II positive cells. CBA mice (H-2k) were used as transfusion recipients. Antibody development to donor class-I H-2 antigens was determined by flow cytometry and enzyme-linked immunoassay. After four weekly transfusions of MNL depleted for class-II positive cells, only 25% of recipient mice developed antibodies to donor H-2d antigens. In contrast, all mice transfused with control MNL became immunized. Second, we studied the alloantigenicity of peripheral MNL from C57BL/6 mice (H-2b) with homozygous deficiency of class-II MHC molecules in H-2 disparate recipient mice. After transfusions with class-II MHC molecule-deficient MNL, 0% of BALB/c, 40% of C57BR, and 25% of CBA-recipient mice developed antibodies to donor H-2b antigen. All control recipient mice were immunized. The antibody activities of the controls were also higher than those in the treatment group who became immunized. Thus, our study shows that class-II MHC antigen-positive MNL play a significant role in transfusion-induced alloimmunization to donor class-I MHC antigens. The results also support the hypothesis that direct antigen presentation by donor class-II positive MNL to the immune system of transfusion recipients is critical for the initiation of humoral immune response to donor MHC antigens.


Sign in / Sign up

Export Citation Format

Share Document